精英家教网 > 高中数学 > 题目详情
已知实数m、n满足等式(
1
3
)m=(
1
4
)n
,下列五个关系式:①m<n<0,②m=n,③n<m<0,④m>n>0,其中不可能成立的关系式有
 
分析:(
1
3
)m=(
1
4
)n
,知lg(
1
3
)
m
=lg(
1
4
)
n
,故
m
n
=
lg4
lg3
>1
,所以当n>0时,m>0,m>n>0;当n<0时,m<0,m<n<0;当m=n=0时,式(
1
3
)m=(
1
4
)n
=1成立.
解答:解:∵(
1
3
)m=(
1
4
)n

∴lg(
1
3
)
m
=lg(
1
4
)
n
,∴-mlg3=-nlg4,
m
n
=
lg4
lg3
>1

∴当n>0时,m>0,m>n>0;
当n<0时,m<0,m<n<0;
当m=n=0时,式(
1
3
)m=(
1
4
)n
=1成立,
故①②④正确,③不正确.
故答案为:③.
点评:本题考查对数式和指数式的互化,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+
1
2
满足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表达式;
(2)若f(x)在定义域(-1,t]上的值域为(-1,1],求t的取值范围;
(3)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足条件f(0)=0,f(-x+5)=f(x-3),且方程f(x)=x有等根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m,n,使f(x)的定义域和值域分别为[m,n]和[3m,3n]?如果存在,求出m,n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省华南师大附中高三综合测试数学试卷1(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.

查看答案和解析>>

同步练习册答案