精英家教网 > 高中数学 > 题目详情
4.直线x-2y-3=0在y轴上的截距是(  )
A.3B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-3

分析 通过x=0求出y的值,即可得到结果.

解答 解:直线x-2y-3=0,当x=0时,y=-$\frac{3}{2}$,
直线2x+y+3=0在y轴上的截距为:-3.
故选:C.

点评 本题考查直线方程的应用,直线的截距的求法,基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)={e^x}+\frac{1}{e^x}$,则使得f(2x)>f(x+3)成立的x的取值范围是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:x+y=4,曲线${C_2}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.(θ$为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)若射线l:θ=α(p>0)分别交C1,C2于A,B两点,求$\frac{{|{OB}|}}{{|{OA}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=4,点D是A1C1的中点,则异面直线AD和BC1所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线l经过坐标原点,且定点A(1,0),B(0,1)到l的距离相等,则直线l的方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB(含端点)相交,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,2]C.(-∞,-2]∪[-$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设Sn为等差数列{an}的前n项的和a1=1,$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{2015}}}}{2015}=1$,则数列$\left\{{\frac{1}{S_n}}\right\}$的前2017项和为(  )
A.$\frac{2017}{1009}$B.$\frac{2017}{2018}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O:x2+y2=16上任意一点P,过P作x轴的垂线段PA,A为垂足,当点P在圆上运动时,线段PA的中点M的轨迹记为曲线C,则曲线C的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)当m=0时,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值为-1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案