精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,若f(x)-kx有三个零点,则k的取值范围为________.


分析:由题意画出图象,利用导数对x分x=0、x<0、x>0三种情况各有一个零点时的k的取值范围求出来,再求交集即可.
解答:由题意画出图象:
(1)当x=0时,f(0)=ln1=0,k×0=0,0是函数f(x)-kx的一个零点;
(2)由函数的图象和单调性可以看出,当x>0和x<0时,分别有一个零点.
①.当x<0时,由,化为<0,解得
②当x>0时,只考虑即可,
令g(x)=ln(x+1)-kx,则
A.当k≥1时,则g(x)<0,即g(x)在(0,+∞)上单调递减,∴g(x)<g(0)=0,g(x)无零点,应舍去;
B.当时,
g(x)=,令g(x)=0,解得,列表如下:
由表格可知:当时,g(x)取得极大值,也是最大值,当且仅当时,g(x)才有零点,
==k-lnk-1.
下面证明h(k)=k-lnk-1>0,
=,∴h(k)在上单调递减,∴=h(k)>h(1)=1-ln1-1=0,
因此0在时成立.
综上可知:当且仅当时,函数f(x)-kx有三个零点.
点评:熟练掌握利用导数研究函数的单调性、极值和最值的方法及数形结合、分类讨论的思想方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案