精英家教网 > 高中数学 > 题目详情
记(bni=i++log2,其中i,n∈N*,i≤n,如(bn3=3++log2,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式恒成立,求实数λ的最大值.
【答案】分析:(I)由(bni=i++log2,知(bn1+(bnn=(1++)+(n+),由此能求出(bn1+(bnn=n+2.
(Ⅱ)由Sn=(bn1+(bn2+(bn3+…+(bnn,知Sn=(bnn+(bnn-1+…+(bn2+(bn1,从而得到2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1=n(n+2),由此能求出Sn的表达式.
(Ⅲ)由=,知=,故恒成立,从而得到,由此能求出实数λ的最大值.
解答:解:(I)∵(bni=i++log2
∴(bn1+(bnn=(1++)+(n+
=n+2+
=n+2.
(Ⅱ)∵Sn=(bn1+(bn2+(bn3+…+(bnn
Sn=(bnn+(bnn-1+…+(bn2+(bn1
∴2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1
=n(n+2),

(Ⅲ)∵=

=
恒成立.
恒成立,
∴11λ-3n2≤-11(2n+3)恒成立,
恒成立,

,n∈N*
∴n=4时,取得最小值
,实数λ的最大值为
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点,易错点是的推导.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某数列的前三项分别是下表第一、二、三行中的某一个数,且前三项中任何两个数不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 14 4 6
第三行 18 9 8
若此数列是等差数列,记作{an},若此数列是等比数列,记作{bn}.
(I)求数列{an}和数列{bn}的通项公式;
(II)将数列{an}的项和数列{bn}的项依次从小到大排列得到数列{cn},数列{cn}的前n项和为Sn,试求最大的自然数M,使得当n≤M时,都有Sn≤2012.
(Ⅲ)若对任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都二模)记(bni=i+
1
2
+log2
i
n+1-i
,其中i,n∈N*,i≤n,如(bn3=3+
1
2
+log2
3
n+1-3
,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式
11λ-3n2
(n+1)(n+2)
≤11(Tn-
3
2
)
恒成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记(bni=i+数学公式+log2数学公式,其中i,n∈N*,i≤n,如(bn3=3+数学公式+log2数学公式,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值; 
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式数学公式恒成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省盐城中学高考数学二模试卷(解析版) 题型:解答题

已知某数列的前三项分别是下表第一、二、三行中的某一个数,且前三项中任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行1446
第三行1898
若此数列是等差数列,记作{an},若此数列是等比数列,记作{bn}.
(I)求数列{an}和数列{bn}的通项公式;
(II)将数列{an}的项和数列{bn}的项依次从小到大排列得到数列{cn},数列{cn}的前n项和为Sn,试求最大的自然数M,使得当n≤M时,都有Sn≤2012.
(Ⅲ)若对任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案