精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前三项的和为-3,前三项的积为8,且a2,a3,a1成对比数列,则数列{|an|}的前n(n≥3)项和为Sn=$\frac{3}{2}{n}^{2}-\frac{11}{2}n+10$,(n≥3).

分析 由等差数列通项公式即可得出an;利用a2,a3,a1成等比数列,求出首项和公差即可得出数列{|an|}的前n项和为Sn

解答 解:设等差数列{an}的公差为d,
∵等差数列{an}的前三项的和为-3,前三项的积为8,
∴得$\left\{\begin{array}{l}{3{a}_{1}+3d=-3}\\{{a}_{1}({a}_{1}+d)({a}_{1}+2d)=8}\end{array}\right.$ 
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=-3}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=-4}\\{d=3}\end{array}\right.$.
∴an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.
当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列,不满足条件.
当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.
故an=3n-7.
设数列{|an|}的前n项和为Sn
∴当n=1,2时,|an|=7-3n,${S}_{n}=\frac{n(4+7-3n)}{2}$=$-\frac{3}{2}{n}^{2}+\frac{11}{2}$n;
当n≥3时,|an|=3n-7,
Sn=-a1-a2+a3+a4+…+an=5+$\frac{(n-2)(2+3n-7)}{2}$=$\frac{3}{2}{n}^{2}-\frac{11}{2}n+10$.(n≥3)
故答案为:Sn=$\frac{3}{2}{n}^{2}-\frac{11}{2}n+10$,(n≥3)

点评 本题考查了等差数列与等比数列的定义通项公式与前n项和公式、含绝对值符号的数列的求和问题.考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设函数f(x)满足f(n+1)=$\frac{2f(n)+1}{2}$(n∈N*)且f(1)=2,则f(20)为(  )
A.$\frac{21}{2}$B.11C.$\frac{23}{2}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知(x+y+2)n=a00xn+a10xn-1+…an0+a11xn-1y+a21xn-2y+…+an1y+a22xn-2y2+a32xn-3y2+…an2y2+…+a(n-1)(n-1)xyn-1+an(n-1)yn-1+annyn,(n∈N*).
(1)当n=4时,求a11和a32
(2)是否存在正整数r和n,使得ar2,a(r+1)2,a(r+2)2的比值恰好是3:4:5,若存在,求出r和n,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题中,正确命题的序号是①④.
①函数y=sin|x|不是周期函数.      
②函数y=tanx在定义域内是增函数.
③函数y=|cos2x+$\frac{1}{2}$|的周期是$\frac{π}{2}$.
④y=sin(x+$\frac{5π}{2}$)是偶函数,
⑤函数y=sin(2x+$\frac{π}{3}$)的图象关于点($\frac{π}{12}$,0)成中心对称图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=-12x的准线与双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1的两条渐近线所围成的三角形的面积等于$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设z是复数,则下列命题中的真命题是(  )
A.若z2<0,则|z|=-z+iB.若z2<0,则$\frac{z}{1+i}$的共轭虚数$\frac{z}{i-1}$
C.若z是虚数,则z2≥0D.若z2≥0,则$\frac{z}{1+i}$的共轭虚数$\frac{z}{i-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2$\sqrt{3}$,(i)若|$\overrightarrow a$+$\overrightarrow b$|=3$\sqrt{3}$,则向量$\overrightarrow a$,$\overrightarrow b$夹角余弦值为$\frac{\sqrt{3}}{6}$,
(ii)若$\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b∈R,函数f(x)=(ax+2)lnx,g(x)=bx2+4-5,且曲线y=f(x)与曲线y=g(x)在x=1处有相同的切线.
(1)求a,b的值;
(2)证明:当x≠1时,曲线y=f(x)恒在曲线y=g(x)的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为(  )
A.$\frac{8}{3}$B.$\frac{7}{3}$C.$\frac{5}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案