1£®ÒÑÖª£¨x+y+2£©n=a00xn+a10xn-1+¡­an0+a11xn-1y+a21xn-2y+¡­+an1y+a22xn-2y2+a32xn-3y2+¡­an2y2+¡­+a£¨n-1£©£¨n-1£©xyn-1+an£¨n-1£©yn-1+annyn£¬£¨n¡ÊN*£©£®
£¨1£©µ±n=4ʱ£¬Çóa11ºÍa32£»
£¨2£©ÊÇ·ñ´æÔÚÕýÕûÊýrºÍn£¬Ê¹µÃar2£¬a£¨r+1£©2£¬a£¨r+2£©2µÄ±ÈֵǡºÃÊÇ3£º4£º5£¬Èô´æÔÚ£¬Çó³örºÍn£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±n=4ʱ£¬¸ù¾Ý¶àÏîʽµÄÕ¹¿ªÊ½¼´¿ÉÇóa11ºÍa32£»
£¨2£©¼ÙÉè½áÂÛ³ÉÁ¢£¬½¨Á¢·½³Ì×é¹ØÏµ£¬½áºÏ×éºÏʽ¹«Ê½½øÐл¯¼òÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©µ±n=4ʱ£¬Ôòa11ÊÇx3yµÄϵÊý£¬a32ÊÇxy2µÄϵÊý£¬
Ôòa11=${C}_{4}^{3}•{C}_{1}^{1}=4$£¬a32=${C}_{4}^{1}{C}_{3}^{2}¡Á2$=2¡Á3¡Á4=24£®
£¨2£©ar2ÊÇxn-ry2µÄϵÊý£¬a£¨r+1£©2ÊÇxn-£¨r+1£©y2µÄϵÊý£¬a£¨r+2£©2ÊÇxn-£¨r+2£©y2µÄϵÊý£¬
Ôòar2=${C}_{n}^{n-r}•{C}_{r}^{2}•{2}^{r-2}$£¬a£¨r+1£©2=${C}_{n}^{n-£¨r+1£©}•{C}_{r+1}^{2}•{2}^{r-1}$£¬
a£¨r+2£©2=${C}_{n}^{n-£¨r+2£©}•{C}_{r+2}^{2}•{2}^{r}$£¬
Èô´æÔÚÕýÕûÊýrºÍn£¬Ê¹µÃar2£¬a£¨r+1£©2£¬a£¨r+2£©2µÄ±ÈֵǡºÃÊÇ3£º4£º5£¬
Ôò$\frac{{C}_{n}^{n-r}•{C}_{r}^{2}•{2}^{r-2}}{{C}_{n}^{n-£¨r+1£©}•{C}_{r+1}^{2}•{2}^{r-1}}$=$\frac{3}{4}$£¬¢ÙÇÒ$\frac{{C}_{n}^{n-£¨r+1£©}•{C}_{r+1}^{2}•{2}^{r-1}}{{C}_{n}^{n-£¨r+2£©}•{C}_{r+2}^{2}•{2}^{r}}$=$\frac{4}{5}$£¬¢Ú
ÓÉ¢ÙµÃ$\frac{{C}_{n}^{r}•{C}_{r}^{2}}{{C}_{n}^{r+1}•{C}_{r+1}^{2}}=\frac{3}{2}$£¬¼´$\frac{\frac{n!}{r!£¨n-r£©!}•\frac{r£¨r-1£©}{2}}{\frac{n!}{£¨r+1£©!£¨n-r-1£©!}•\frac{£¨r+1£©r}{2}}$=$\frac{r+1}{n-r}•\frac{r-1}{r+1}$=$\frac{r-1}{n-r}$=$\frac{3}{2}$£¬
¼´2n-5r=-2£¬¢Û
ÓÉ¢Ú$\frac{{C}_{n}^{r+1}•{C}_{r+1}^{2}}{{C}_{n}^{r+2}•{C}_{r+2}^{2}}=\frac{8}{5}$£¬µÃ$\frac{\frac{n!}{£¨r+1£©!£¨n-r-1£©!}•\frac{£¨r+1£©r}{2}}{\frac{n!}{£¨r+2£©!£¨n-r-2£©!}•\frac{£¨r+2£©£¨r+1£©}{2}}$=$\frac{r+2}{n-r-1}•\frac{r}{r+2}$=$\frac{r}{n-r-1}=\frac{8}{5}$£¬
¼´8n-13r=8£¬¢Ü£¬
ÁªÁ¢¢Û¢ÜµÃ£¬r=$\frac{16}{7}$£¬n=$\frac{39}{7}$£¬
¡ßr£¬n¶¼²»ÊÇÕýÕûÊý£¬
¡àar2£¬a£¨r+1£©2£¬a£¨r+2£©2µÄ±ÈֵǡºÃÊÇ3£º4£º5£¬²»³ÉÁ¢£¬
¼´²»´æÔÚÕýÕûÊýrºÍn£¬Ê¹µÃar2£¬a£¨r+1£©2£¬a£¨r+2£©2µÄ±ÈֵǡºÃÊÇ3£º4£º5£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÅÅÁÐ×éºÏ¶þÏîʽ¶¨ÀíµÄÓ¦Ó㬽áºÏж¨Ò壬½¨Á¢·½³Ì¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ۺϿ¼²éѧÉúµÄÔËËãÄÜÁ¦£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚ¡÷ABCÖÐ$|AC|=1£¬|AB|=2£¬¡ÏBAC=\frac{¦Ð}{3}$£¬$\overrightarrow{BC}$=3$\overrightarrow{DC}$£¬D£¬Ôò$\overrightarrow{AD}•\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®-1B£®$-\frac{2}{3}$C£®$\frac{2}{3}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ£¨x-2£©2£¨2x+1£©3µÄÕ¹¿ªÊ½ÖУ¬º¬x2ÏîµÄϵÊýÊÇ25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý£¬f£¨1£©=1£¬ÇÒÈô?a¡¢b¡Ê[-1£¬1]£¬a+b¡Ù0£¬ºãÓÐ$\frac{f£¨a£©+f£¨b£©}{a+b}$£¾0£¬
£¨1£©Ö¤Ã÷£ºº¯Êýf£¨x£©ÔÚ[-1£¬1]ÉÏÊÇÔöº¯Êý£»
£¨2£©½â²»µÈʽ$f£¨{x+\frac{1}{2}}£©£¼f£¨{\frac{1}{x-1}}£©$£»
£¨3£©Èô¶Ô?x¡Ê[-1£¬1]¼°?a¡Ê[-1£¬1]£¬²»µÈʽf£¨x£©¡Üm2-2am+1ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÀⳤÏàµÈµÄÈýÀâ×¶A-BCDµÄ¸©ÊÓͼÊDZ߳¤Îª2µÄÕý·½ÐΣ¬ÈçͼËùʾ£¬Èô¸Ã¼¸ºÎÌåµÄÁíÒ»¸öÀⳤ¶¼ÏàµÈµÄÈýÀâ×¶A¡ä-B¡äC¡äD¡äÖ½ºÐÄÚ¿ÉÒÔÈÎÒâת¶¯£¬ÔòÈýÀâ×¶A¡ä-B¡äC¡äD¡äµÄÀⳤµÄ×îСֵΪ£¨¡¡¡¡£©
A£®3$\sqrt{6}$B£®8C£®6$\sqrt{3}$D£®6$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷AOBÖУ¬µãA£¨2£¬1£©£¬B£¨3£¬0£©£¬µãEÔÚÉäÏßOBÉÏ×ÔO¿ªÊ¼ÏòÓÒÒÆ¶¯£®ÉèOE=x£¬¹ýE×÷OBµÄ´¹Ïßl£¬¼Ç¡÷AOBÔÚÖ±Ïßl×ó±ß²¿·ÖµÄÃæ»ýΪS£¬ÊÔд³öSÓëxµÄº¯Êý¹ØÏµÊ½£¬²¢»­³ö´óÖµÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡÷ABCÖУ¬
¢ÙÈôB=60¡ã£¬a=10£¬b=7£¬Ôò¸ÃÈý½ÇÐÎÓÐÇÒÓÐÁ½½â£»
¢ÚÈôÈý½ÇÐεÄÈý±ßµÄ±ÈÊÇ3£º5£º7£¬Ôò´ËÈý½ÇÐεÄ×î´ó½ÇΪ120¡ã£»
¢ÛÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÇÒÈý±ß³¤·Ö±ðΪ2£¬3£¬x£¬ÔòxµÄȡֵ·¶Î§ÊÇ$\sqrt{5}£¼x£¼\sqrt{13}$£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰÈýÏîµÄºÍΪ-3£¬Ç°ÈýÏîµÄ»ýΪ8£¬ÇÒa2£¬a3£¬a1³É¶Ô±ÈÊýÁУ¬ÔòÊýÁÐ{|an|}µÄǰn£¨n¡Ý3£©ÏîºÍΪSn=$\frac{3}{2}{n}^{2}-\frac{11}{2}n+10$£¬£¨n¡Ý3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èôa1£¬a2£¬a3£¬a4¡ÊR+£¬ÓÐÒÔϲ»µÈʽ³ÉÁ¢£º$\frac{{{a_1}+{a_2}}}{2}¡Ý\sqrt{{a_1}{a_2}}$£¬$\frac{{{a_1}+{a_2}+{a_3}}}{3}¡Ý\root{3}{{{a_1}{a_2}{a_3}}}$£¬$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}¡Ý\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$£®ÓÉ´ËÍÆ²â³ÉÁ¢µÄ²»µÈʽÊÇ$\frac{{a}_{1}+{a}_{2}+¡­+{a}_{n}}{n}¡Ý\root{n}{{a}_{1}{a}_{2}¡­{a}_{n}}$£¨µ±ÇÒ½öµ±a1=a2=¡­=anʱȡµÈºÅ£©£®£¨Òª×¢Ã÷³ÉÁ¢µÄÌõ¼þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸