精英家教网 > 高中数学 > 题目详情
已知函数f (x)=x3-3ax+1,a∈R.
(Ⅰ) 求f (x)的单调区间;
(Ⅱ) 求所有的实数a,使得不等式-1≤f (x)≤1对x∈[0,
3
]恒成立.
(I)∵f (x)=x3-3ax+1,
∴f′(x)=3x2-3a,
当a≤0时,f′(x)≥0恒成立,f (x)的单调增区间为R;
当a>0时,由f′(x)>0得x<-
a
或x>
a

故f (x)的单调增区间为(-∞,-
a
)和(
a
,+∞),f (x)的单调减区间为(-
a
a

(II)当a≤0时,由(I)可知f (x)在[0,
3
]递增,且f(0)=1,此时无解;
当0<a<3时,由(I)可知f (x)在∈[0,-
a
)上递减,在(
a
3
]递增,
∴f (x)在[0,
3
]的最小值为f(
a
)=1-2a
a

f(
a
)≥1
f(
3
)≤1
f(0)≤1
,即
a
a
≤1
a≥1

解得:a=1
当a≥3时,由(I)可知f (x)在[0,
3
]上递减,且f(0)=1,
f(
3
)=3
3
-3
3
a+1≥-1

解得:a≤1+
2
3
9

此时无解
综上a=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案