精英家教网 > 高中数学 > 题目详情
已知向量m=(sin
x
4
cos
x
4
),n=(
3
cos
x
4
cos
x
4
),记f(x)=m•n;
(1)若f(x)=1,求cos(x+
π
3
)
的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
分析:(1)先根据两角和与差的正弦公式将函数f(x)化简为y=Asin(wx+ρ)+b的形式,根据f(x)=1求出sin(
x
2
+
π
6
),再由二倍角公式求出答案.
(2)先根据正弦定理将边的关系转化为角的正弦的关系,再由诱导公式求出cosB得到角B的值,从而可确定角A的范围,再求出
A
2
+
π
6
范围,得到f(A)的取值范围.
解答:解:(1)f(x)=m•n=
3
sin
x
4
cos
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
2
+
1
2
=sin(
x
2
+
π
6
)+
1
2

∵f(x)=1,∴sin(
x
2
+
π
6
)=
1
2

∴cos(x+
π
3
)=1-2sin2(
x
2
+
π
6
)
=
1
2

(2)∵(2a-c)cosB=bcosC,∴由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,∴2sinAcosB=sin(B+C),
∵A+B+C=π,,∴sin(B+C)=sinA,且sinA≠0,
∴cosB=
1
2
,B=
π
3

∴0<A<
3
,∴
π
6
A
2
+
π
6
π
2
1
2
<sin(
A
2
+
π
6
)<1

π
6
A
2
+
π
6
π
2
1
2
<sin (
A
2
+
π
6
)<1

又∵f(x)=sin(
x
2
+
π
6
)+
1
2
,∴f(A)=sin(
A
2
+
π
6
)+
1
2

故函数f(A)的取值范围是(1,
3
2
).
点评:本题主要考查两角和与差的正弦公式和正弦定理的应用.向量和三角函数的综合题是高考的热点问题,每年必考,要给予充分的重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinθ,2cosθ),
n
=(
3
,-
1
2

(Ⅰ)当θ∈[0,π]时,求函数f(θ)=
m
×
n
的值域;
(Ⅱ)若
m
n
,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin(A-B),sin(
π
2
-A)
),
n
=(1,2sinB),且
m
n
=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=
3
2
sinC
,且S△ABC=
3
,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(sinωx,cosωx),n=(cosωx,
3
cosωx)且0<ω<2,函数f(x)=m•n,且f(
π
3
)=
3
2

(Ⅰ)求ω;
(Ⅱ)将函数y=g(x)的图象向右平移
π
3
个单位,再将所得图象上各点的横坐标缩短为原来的
1
4
,得到函数y=f(x)的图象,求函数g(x)的解析式及其在[-
π
3
π
3
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinωx,1),
n
=(
3
Acos
ωx,
A
2
cos2
ωx)(A>0,ω>0),函数f(x)=
m
n
的最大值为3,且其图象相邻两条对称轴之间的距离为π.
(I)求函数f(x)的解析式;
(II)将函数y=f(x)的图象向左平移
π
6
个单位,再将所得图象上各点的横坐标缩短为原来的
1
2
倍,纵坐标不变,得到函数y=g(x)的图象.
(1)求函数g(x)的单调递减区间;
(2)求函数g(x)在[
π
4
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(cosθ,sinθ),n=(-sinθ,cosθ),θ∈(π,2π),且|m+n|=,求cos(+)的值.

查看答案和解析>>

同步练习册答案