精英家教网 > 高中数学 > 题目详情
(2011•西城区一模)已知抛物线y2=4x的焦点为F,直线l过点M(4,0).
(Ⅰ)若点F到直线l的距离为
3
,求直线l的斜率;
(Ⅱ)设A,B为抛物线上两点,且AB不与x轴重合,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.
分析:(Ⅰ)设直线l的方程为y=k(x-4),由已知,抛物线C的焦点坐标为(1,0),因为点F到直线l的距离为
3
,所以
|3k|
1+k2
=
3
,由此能求出直线l的斜率.
(Ⅱ)设线段AB中点的坐标为N(x0,y0),A(x1,y1),B(x2,y2),因为AB不垂直于x轴,所以直线MN的斜率为
y0
x0-4
,直线AB的斜率为
4-x0
y0
,直线AB的方程为y-y0=
4-x0
y0
(x-x0)
,由此能够证明线段AB中点的横坐标为定值.
解答:解:(Ⅰ)由已知,x=4不合题意.设直线l的方程为y=k(x-4),
由已知,抛物线C的焦点坐标为(1,0),…(1分)
因为点F到直线l的距离为
3

所以
|3k|
1+k2
=
3
,…(3分)
解得k=±
2
2
,所以直线l的斜率为±
2
2
.…(5分)
(Ⅱ)设线段AB中点的坐标为N(x0,y0),A(x1,y1),B(x2,y2),
因为AB不垂直于x轴,
则直线MN的斜率为
y0
x0-4

直线AB的斜率为
4-x0
y0
,…(7分)
直线AB的方程为y-y0=
4-x0
y0
(x-x0)
,…(8分)
联立方程
y-y0=
4-x0
y0
(x-x0)
y2=4x

消去x得(1-
x0
4
)y2-y0y+
y
2
0
+x0(x0-4)=0
,…(10分)
所以y1+y2=
4y0
4-x0
,…(11分)
因为N为AB中点,
所以
y1+y2
2
=y0
,即
2y0
4-x0
=y0
,…(13分)
所以x0=2.即线段AB中点的横坐标为定值2.…(14分)
点评:本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,抛物线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.本题的易错点是计算量大,容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西城区一模)右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)已知全集U={1,2,3,4,5},集合A={2,5},B={4,5},则?U(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)阅读右侧程序框图,则输出的数据S为
31
31

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区一模)对于平面α和异面直线m,n,下列命题中真命题是(  )

查看答案和解析>>

同步练习册答案