ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x2
4
+y2=1
£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëË«ÇúÏßC2ºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
OA
OB
£¾2
£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄ·¶Î§£®
£¨3£©ÊÔ¸ù¾Ý¹ì¼£C2ºÍÖ±Ïßl£¬Éè¼ÆÒ»¸öÓëxÖáÉÏijµãÓйصÄÈý½ÇÐÎÐÎ×´ÎÊÌ⣬²¢ÓèÒÔ½â´ð£¨±¾Ì⽫¸ù¾ÝËùÉè¼ÆµÄÎÊÌâ˼ά²ã´ÎÆÀ·Ö£©£®
·ÖÎö£º£¨1£©ÉèË«ÇúÏßC2µÄ·½³ÌΪ
x2
a2
-
y2
b2
=1
£¬Ôòa2=4-1=3£¬ÔÙÓÉa2+b2=c2µÃb2=1£¬ÓÉ´ËÄÜÇó³ö¹ÊC2µÄ·½³Ì£®
£¨2£©½«y=kx+
2
´úÈë
x2
3
-y2=1
µÃ(1-3k2)x2-6
2
kx-9=0
£®ÓÉÖ±ÏßlÓëË«ÇúÏßC2½»ÓÚ²»Í¬µÄÁ½µãµÃ£º
1-3k2¡Ù0
¡÷=(6
2
k)2+36(1-3k2)=36(1-k2)£¾0
£¬ÓÉ´ËÄÜÇó³ökµÄÈ¡Öµ·¶Î§£®
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
2
1-3k2
=-
1
k
(x-
3
2
k
1-3k2
)
£¬Áîy=0£¬µÃm=
4
2
k
1-3k2
=
4
2
1
k
-3k
£¬ÓÉ´ËÄÜÇó³ömµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©ÉèË«ÇúÏßC2µÄ·½³ÌΪ
x2
a2
-
y2
b2
=1
£¬
Ôòa2=4-1=3£¬ÔÙÓÉa2+b2=c2µÃb2=1£¬¹ÊC2µÄ·½³ÌΪ
x2
3
-y2=1

£¨2£©½«y=kx+
2
´úÈë
x2
3
-y2=1
µÃ(1-3k2)x2-6
2
kx-9=0

ÓÉÖ±ÏßlÓëË«ÇúÏßC2½»ÓÚ²»Í¬µÄÁ½µãµÃ£º
1-3k2¡Ù0
¡÷=(6
2
k)2+36(1-3k2)=36(1-k2)£¾0
¡àk2¡Ù
1
3
ÇÒk2£¼1¡­¢ÙA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
6
2
k
1-3k2
£¬x1x2=
-9
1-3k2
¡àx1x2+y1y2=x1x2+(kx1+
2
)(kx2+
2
)
=(k2+1)x1x2+
2
k(x1+x2)+2=
3k2+7
3k2-1

ÓÖ¡ß
OA
OB
£¾2
£¬µÃx1x2+y1y2£¾2£¬¡à
3k2+7
3k2-1
£¾2

¼´
-3k2+9
3k2-1
£¾0
£¬½âµÃ£º
1
3
£¼k2£¼3£¬¡­
¢Ú£¬¹ÊkµÄÈ¡Öµ·¶Î§Îª(-1£¬-
3
3
)¡È(
3
3
£¬1)
£®
£¨3£©ÈôxÖáÉÏ´æÔÚµãP£¨m£¬0£©£¬Ê¹¡÷APBÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇómµÄÈ¡Öµ·¶Î§£®
½â£ºÏÔÈ»£¬µ±k=0ʱ£¬Pµã×ø±êΪ£¨0£¬0£©£¬¼´m=0£»
µ±k¡Ù0ʱ£¬ÉèÏ߶ÎABµÄÖеãM£¨x0£¬y0£©£¬
ÓÉ£¨2£©Öªx0=
x1+x2
2
=
3
2
k
1-3k2
£¬y0=
3
2
k2
1-3k2
+
2
=
2
1-3k2

ÓÚÊÇ£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-
2
1-3k2
=-
1
k
(x-
3
2
k
1-3k2
)
£¬Áîy=0£¬µÃm=
4
2
k
1-3k2
=
4
2
1
k
-3k
£¬ÓÉ¢ÙÖª£¬k¡Ê(-1£¬-
3
3
)¡È(-
3
3
£¬0)¡È(0£¬
3
3
)¡È(
3
3
£¬1)

¡à
1
k
-3k¡ÊR
£¬¡àm¡ÊR£¬ÇÒm¡Ù0£®
×ÛÉÏËùÊö£¬m¡ÊR£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éË«ÇúÏß±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØϵ£¬Ë«ÇúÏߵļòµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x2
4
+y2=1£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨¢ñ£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëÍÖÔ²C1¼°Ë«ÇúÏßC2¶¼ºãÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÇÒlÓëC2µÄÁ½¸ö½»µãAºÍBÂú×ã
OA
OB
£¼6£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x2
4
+y2=1£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+
2
ÓëË«ÇúÏßC2ºãÓÐÁ½¸ö²»Í¬µÄ½»µãAºÍB£¬ÇÒ
OA
OB
£¾2£¨ÆäÖÐOΪԭµã£©£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬ÀëÐÄÂÊΪ
3
2
£¬Á½¸ö½¹µã·Ö±ðΪF1ºÍF2£¬ÍÖÔ²C1ÉÏÒ»µãµ½F1ºÍF2µÄ¾àÀëÖ®ºÍΪ12£¬ÍÖÔ²C2µÄ·½³ÌΪ
x2
(a-2)2
+
y2
b2-1
=1
£¬Ô²C3£ºx2+y2+2kx-4y-21=0£¨k¡ÊR£©µÄÔ²ÐÄΪµãAk£®
£¨I£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨II£©Çó¡÷AkF1F2µÄÃæ»ý£»
£¨III£©ÈôµãPΪÍÖÔ²C2ÉϵĶ¯µã£¬µãMΪ¹ýµãPÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉϵĵ㣬
|OP|
|OM|
=e
£¨eΪÍÖÔ²C2µÄÀëÐÄÂÊ£©£¬ÇóµãMµÄ¹ì¼££®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1µÄ·½³ÌΪ
x24
+y2=1
£¬Ë«ÇúÏßC2µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪC1µÄ×ó¡¢ÓÒ¶¥µã£¬¶øC2µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇC1µÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨2£©Éè¹ý¶¨µãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²C1½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒÂú×ã|OA|2+|OB|2£¾|AB|2£¬£¨ÆäÖÐOΪԭµã£©£¬ÇólбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸