精英家教网 > 高中数学 > 题目详情
9.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,4),离心率为$\frac{3}{5}$,求C的方程.

分析 由离心率公式和(0,4)满足椭圆方程,可得b=4,再由a,b,c的关系可得a=5,进而得到椭圆方程.

解答 解:将点(0,4 )代入C 的方程得$\frac{16}{{b}^{2}}$=1,∴b=4,
又e=$\frac{c}{a}$=$\frac{3}{5}$得$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{9}{25}$,即1-$\frac{16}{{a}^{2}}$=$\frac{9}{25}$,∴a=5,
∴C的方程为$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.

点评 本题考查椭圆的方程的求法,考查椭圆的性质的运用,主要是离心率的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知直线l的倾斜角α满足tanα=$\sqrt{3}$,则直线l的倾斜角是(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线2ax-by+2=0(其中a,b为正实数)经过圆C:x2+y2+2x-4y+1=0的圆心,则$\frac{4}{a}+\frac{1}{b}$的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设p:存在x∈(1,+∞),使函数g(x)=log2(tx2+2x-2)有意义,若¬p为假命题,则t的取值范围为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=($\frac{1}{3}$)x在区间[-2,-1]上的最大值是(  )
A.1B.9C.27D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在常数t使得方程f(x)=t有两个不等的实根x1,x2(x1<x2),那么x1•f(x2)的取值范围为(  )
A.[$\frac{3}{4}$,1)B.[$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$)C.[$\frac{3}{16}$,$\frac{1}{2}$)D.[$\frac{3}{8}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=-x2+2x+2
(1)求f(x)在区间[0,3]上的最大值和最小值;
(2)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-(3a+1)x+2a+1(a∈R).
(1)若f(x)≤0恒成立,试求a的值;
(2)解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若数列{xn}满足对任意的m∈N*(m≤n),都有{xn}的前m项和等于前m项积(前1项和及前1项积均等于首项x1),则称数列{xn}为“和谐数列”.
(1)已知数列{an}是首项a1=2的“和谐数列”,求a3的值;
(2)设数列{an}是项数不少于3的递增的正整数数列,证明{an}不是“和谐数列”;
(3)若数列{$\frac{1}{{a}_{n}}$}是“和谐数列”,且0<a1<1;
①试求an+1与an的递推关系;
②证明对任意的n∈N*,都有0<an<1成立.

查看答案和解析>>

同步练习册答案