精英家教网 > 高中数学 > 题目详情
过椭圆C:=1的左焦点作直线l⊥x轴,交椭圆C于A,B两点,若△OAB(O为坐标原点)是直角三角形,则椭圆C的离心率e为( )
A.
B.
C.
D.
【答案】分析:首先求出A、B两点坐标,进而求出/AB/、/AO/、/BO/的长,再根据△OAB是直角三角形得出/AB/2=/AO/2+/BO/2即b2=ac,然后由b2=a2-c2,求出离心率.
解答:解:由题意知A(-c,) B(-c,-
∴/AB/=2 AO=BO=
∵△OAB是直角三角形
∴/AB/2=/AO/2+/BO/2
=2c2+
整理得b2=ac
∵b2=a2-c2
∴e2+e-1=0
又∵e>0
∴e=
故选C.
点评:本题考查了椭圆的性质,以及直角三角形的有关知识,解题过程注意e>0,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
c2
4
(c是椭圆的焦半距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点(1,
4
2
3
)
(
3
3
2
,1)
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
OP
OE
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

点,左焦

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案