精英家教网 > 高中数学 > 题目详情
14.已知tan$\frac{α}{2}$=3,则cosα-sinα=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{5}$D.-$\frac{7}{5}$

分析 利用三角函数万能公式直接求解.

解答 解:∵tan$\frac{α}{2}$=3,
∴cosα-sinα
=$\frac{1-ta{n}^{2}\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$-$\frac{2tan\frac{α}{2}}{1+ta{n}^{2}\frac{α}{2}}$
=$\frac{1-9}{1+9}$-$\frac{6}{1+9}$
=-$\frac{7}{5}$.
故选:D.

点评 本题考查三角函数求值,是基础题,解题时要认真审题,注意万能公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.与直线4x+3y-5=0平行,并且到它距离等于3的直线方程:4x+3y+10=0或4x+3y-20=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰好有四个零点,则b的取值范围是($\frac{7}{4}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A1A2、B1B2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的长轴和短轴,若△A1B1B2是等边三角形,则该椭圆的离心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求法向量为(1,-2)且与圆x2+y2-2y-4=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{a}$,$\overrightarrow{b}$是空间单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,若空间向量$\overrightarrow{c}$满足对于任意x、y∈R,|$\overrightarrow{c}$-(x$\overrightarrow{a}$+y$\overrightarrow{b}$)|≥|$\overrightarrow{c}$-$\overrightarrow{b}$|=2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的大小是$\frac{π}{3}$,$\overrightarrow{b}$在$\overrightarrow{c}$上的投影是$\frac{\sqrt{5}}{5}$.|$\overrightarrow{c}$+$\overrightarrow{a}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四棱锥P-ABCD中,直角梯形ABCD中,AD⊥CD,AB∥CD,∠APD=60°,PA=CD=2PD=2AB=2,且平面PDA⊥平面ABCD,E为PC的中点.
(Ⅰ)求证:PD⊥平面ABCD;
(Ⅱ)求直线PD与平面BDE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.二次函数y=ax2+2ax+1(a<0)在区间[-1,4]上的最大值为4,则a的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的前n项和为Sn,若S11=22,则a3+a7+a8=(  )
A.18B.12C.9D.6

查看答案和解析>>

同步练习册答案