精英家教网 > 高中数学 > 题目详情

已知函数f(x)在R上为奇函数,当x≥0时,f(x)=x2+4x.
(1)求f(x)的解析式,并写出f(x)的单调区间(不用证明);
(2)若f(a2-2)+f(a)<0,求实数a的取值范围.

解:(1)设 x<0,则-x>0
∴f(-x)=(-x)2+4(-x)=x2-4x
又∵f(x)在R上为奇函数
∴f(x)=-f(-x)=-(x2-4x)=-x2+4x
∴f(x)= 单调递增区间是(-∞,+∞)
(2)原不等式等价于:f(a2-2)<-f(a)
∵f(x)在R上为奇函数
∴上式等价于:f(a2-2)<f(-a) ①
又∵f(x)在(-∞,+∞)上单调递增
①等价于:a2-2<-a,即a2+a-2<0,解得:-2<a<1
故答案为:(-2,1)
分析:(1)先设 x<0,则-x>0这样可以就可以利用x≥0时的解析式,再根据奇偶性就可求出f(x)的解析式,再写出单调区间.
(2)要把不等式进行等价转化,先移项,再根据奇函数转化,再根据单调性去掉函数符号,然后解关于a的不等式就可求出范围.
点评:本题第1问主要考查利用函数奇偶性求对称区间上的函数解析式,第2问主要用函数的奇偶性和单调性对原不等式进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足2f(x)+f(1-x)=3x2-2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任意实数a>0和任意实数x都有f(ax)=a﹒f(x).
(1)证明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2),则F′(2)=
 

查看答案和解析>>

同步练习册答案