精英家教网 > 高中数学 > 题目详情
(2012•昌平区一模)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是(  )
分析:档次提高时,带来每件利润的提高,产量下降,第k档次时,每件利润为[8+2(k-1)],产量为[60-3(k-1)],根据:利润=每件利润×产量,列函数式,利用配方法求函数的最值,即可得到结论.
解答:解:由题意,第k档次时,每天可获利润为:y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤x≤10)
配方可得y=-6(k-9)2+864,
∴k=9时,获得利润最大
故选C.
点评:本题考查二次函数,考查利用数学知识解决实际问题.档次提高时,带来每件利润的提高,产量下降,列函数式时,要注意这“一增一减”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•昌平区一模)一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知函数f(x)=lnx+
1x
+ax,x∈(0,+∞)
(a为实常数).
(1)当a=0时,求函数f(x)的最小值;
(2)若函数f(x)在[2,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区一模)已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=7,则|
b
|=
2
6
2
6

查看答案和解析>>

同步练习册答案