精英家教网 > 高中数学 > 题目详情
我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C1n
)(
C2n
)(
C3n
)…(
Cn-1n
)(
Cnn
)
,求
lim
n→∞
dn
dn+1
(1)m=(1-2x)(1+3x2)=1-2x+3x2-6x3(1分)
m=
.
x\~(1)(-2)(3)(-6)
(3分)
(2)a2=-1,a3=
1
2
a4=2,a5=-1,a6=
1
2

an+1=
1
1-an
an+2=
1
1-an+1
=
1
1-
1
1-an
=
1-an
-an

an+3=
1
1-an+2
=
1
1+
1-an
an
=an(n∈N*),知{an}是周期为3的数列     (6分)
假设存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立,则:bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)

=[2+(-1)×2+
1
2
×22]+[2×23+(-1)×24+
1
2
×25]
+…+[2×23n-3+(-1)×23n-2+
1
2
×23n-1]
=[2+(-1)×2+
1
2
×22]×(1+23+26+…+23n-3)
=
1-8n
1-8
=
2
7
×8n-
2
7

p=
2
7
,q=-
2
7

即存在实常数p=
2
7
,q=-
2
7
,对于任意的n∈N*,bn=
2
7
8n-
2
7
总成立    (10分)
(3)dn=
C1n
+
C2n
t+
C3n
t2+
C4n
t3…+
Cnn
tn-1=
C1n
t+
C2n
t2+
C3n
t3+…+
Cnn
tn
t
=
[
C0n
+
C1n
t+
C2n
t2+
C3n
t3+…+
Cnn
tn]-1
t
=
(1+t)n-1
t
(14分)
lim
n→∞
dn
dn+1
=
lim
n→∞
(1+t)n-1
(1+t)n+1-1
=
1
1+t
|1+t>1
1|1+t<1
,即
lim
n→∞
dn
dn+1
=
1
1+t
,t>0
1,-1<t<0
(18分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源:2008-2009学年度高三数学模拟试题分类汇编:数列 题型:044

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:

.如:,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.

(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.

(2)若数列{an}满足a1=2,

,是否存在实常数p和q,对于任意的n∈N*,bn=p·8n+q总成立?若存在,求出p和q;若不存在,说明理由.

(3)若常数t满足t≠0且t>-1,,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:数学公式.如:数学公式,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,数学公式数学公式(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,数学公式,求数学公式

查看答案和解析>>

科目:高中数学 来源:2008年上海市奉贤区高三联考数学试卷(理科)(解析版) 题型:解答题

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:.如:,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,,求

查看答案和解析>>

同步练习册答案