£¨2008•·îÏÍÇøÄ£Ä⣩ÎÒÃǹ涨£º¶ÔÓÚÈÎÒâʵÊýA£¬Èô´æÔÚÊýÁÐ{an}ºÍʵÊýx£¨x¡Ù0£©£¬Ê¹µÃA=a1+a2x+a3x2+¡­+anxn-1£¬Ôò³ÆÊýA¿ÉÒÔ±íʾ³Éx½øÖÆÐÎʽ£¬¼ò¼ÇΪ£ºA=
.
x\¡«(a1)(a2)(a3)¡­(an-1)(an)
£®È磺A=
.
2\¡«(-1)(3)(-2)(1)
£¬Ôò±íʾAÊÇÒ»¸ö2½øÖÆÐÎʽµÄÊý£¬ÇÒA=-1+3¡Á2+£¨-2£©¡Á22+1¡Á23=5£®
£¨1£©ÒÑÖªm=£¨1-2x£©£¨1+3x2£©£¨ÆäÖÐx¡Ù0£©£¬ÊÔ½«m±íʾ³Éx½øÖƵļò¼ÇÐÎʽ£®
£¨2£©ÈôÊýÁÐ{an}Âú×ãa1=2£¬ak+1=
1
1-ak
£¬k¡ÊN*
£¬bn=
.
2\¡«(a1)(a2)(a3)¡­(a3n-2)(a3n-1)(a3n)
£¨n¡ÊN*£©£¬ÊÇ·ñ´æÔÚʵ³£ÊýpºÍq£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬bn=p•8n+q×ܳÉÁ¢£¿Èô´æÔÚ£¬Çó³öpºÍq£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Èô³£ÊýtÂú×ãt¡Ù0ÇÒt£¾-1£¬dn=
.
t\¡«(
C
1
n
)(
C
2
n
)(
C
3
n
)¡­(
C
n-1
n
)(
C
n
n
)
£¬Çó
lim
n¡ú¡Þ
dn
dn+1
£®
·ÖÎö£º£¨1£©ÏȽ«m=£¨1-2x£©£¨1+3x2£©Õ¹¿ª£¬ÔÙ¸ù¾Ý¶¨Ò壬½«m±íʾ³Éx½øÖƵļò¼ÇÐÎʽ£®
£¨2£©ÓÉÌâÒ⣬֪{an}ÊÇÖÜÆÚΪ3µÄÊýÁУ®¼ÙÉè´æÔÚʵ³£ÊýpºÍq£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬bn=p•8n+q×ܳÉÁ¢£¬ÔòÓɶ¨Òå¿ÉµÃp=
2
7
£¬q=-
2
7
£®
£¨3£©ÏÈÇódn=
C
1
n
+
C
2
n
t+
C
3
n
t2+
C
4
n
t3¡­+
C
n
n
tn-1=
C
1
n
t+
C
2
n
t2+
C
3
n
t3+¡­+
C
n
n
tn
t
=
[
C
0
n
+
C
1
n
t+
C
2
n
t2+
C
3
n
t3+¡­+
C
n
n
tn]-1
t
=
(1+t)n-1
t
£¬ÔÙÇó¼«ÏÞ£®
½â´ð£º½â£º£¨1£©m=£¨1-2x£©£¨1+3x2£©=1-2x+3x2-6x3£¨1·Ö£©
Ôòm=
.
x\¡«(1)(-2)(3)(-6)
£¨3·Ö£©
£¨2£©a2=-1£¬a3=
1
2
£¬a4=2£¬a5=-1£¬a6=
1
2

¡ßan+1=
1
1-an
¡àan+2=
1
1-an+1
=
1
1-
1
1-an
=
1-an
-an

¡àan+3=
1
1-an+2
=
1
1+
1-an
an
=an£¨n¡ÊN*£©£¬Öª{an}ÊÇÖÜÆÚΪ3µÄÊýÁР    £¨6·Ö£©
¼ÙÉè´æÔÚʵ³£ÊýpºÍq£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬bn=p•8n+q×ܳÉÁ¢£¬Ôò£ºbn=
.
2\¡«(a1)(a2)(a3)¡­(a3n-2)(a3n-1)(a3n)

=[2+(-1)¡Á2+
1
2
¡Á22]+[2¡Á23+(-1)¡Á24+
1
2
¡Á25]
+¡­+[2¡Á23n-3+(-1)¡Á23n-2+
1
2
¡Á23n-1]
=[2+(-1)¡Á2+
1
2
¡Á22]¡Á(1+23+26+¡­+23n-3)
=2¡Á
1-8n
1-8
=
2
7
¡Á8n-
2
7

¡àp=
2
7
£¬q=-
2
7
£®
¼´´æÔÚʵ³£Êýp=
2
7
£¬q=-
2
7
£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬bn=
2
7
8n-
2
7
×ܳÉÁ¢    £¨10·Ö£©
£¨3£©dn=
C
1
n
+
C
2
n
t+
C
3
n
t2+
C
4
n
t3¡­+
C
n
n
tn-1=
C
1
n
t+
C
2
n
t2+
C
3
n
t3+¡­+
C
n
n
tn
t
=
[
C
0
n
+
C
1
n
t+
C
2
n
t2+
C
3
n
t3+¡­+
C
n
n
tn]-1
t
=
(1+t)n-1
t
£¨14·Ö£©
¡à
lim
n¡ú¡Þ
dn
dn+1
=
lim
n¡ú¡Þ
(1+t)n-1
(1+t)n+1-1
=
1
1+t
|1+t£¾1
1|1+t£¼1
£¬¼´
lim
n¡ú¡Þ
dn
dn+1
=
1
1+t
£¬t£¾0
1£¬-1£¼t£¼0
£¨18·Ö£©
µãÆÀ£º±¾ÌâÒÔж¨ÒåΪÔØÌ壬¿¼²éÊýÁм°¼«ÏÞ£¬¹Ø¼üÊÇÀí½âж¨Ò壬ºÏÀíת»¯£¬ÐèÒª¼ÆËãϸÐÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•·îÏÍÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÈôSn=2n-1£¬Ôòa7=
64
64
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•·îÏÍÇø¶þÄ££©º¯Êýf(x)=
x2+x-2
µÄ¶¨ÒåÓòΪ
£¨-¡Þ£¬-2]¡È[1£¬+¡Þ£©
£¨-¡Þ£¬-2]¡È[1£¬+¡Þ£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•·îÏÍÇø¶þÄ££©º¯Êýf£¨x£©=x£¨1-x£©£¬x¡Ê£¨0£¬1£©µÄ×î´óֵΪ
1
4
1
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•·îÏÍÇøһģ£©ÎÒÃǽ«¾ßÓÐÏÂÁÐÐÔÖʵÄËùÓк¯Êý×é³É¼¯ºÏM£ºº¯Êýy=f£¨x£©£¨x¡ÊD£©£¬¶ÔÈÎÒâx£¬y£¬
x+y
2
¡ÊD
¾ùÂú×ãf(
x+y
2
)¡Ý
1
2
[f(x)+f(y)]
£¬µ±ÇÒ½öµ±x=yʱµÈºÅ³ÉÁ¢£®
£¨1£©Èô¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©¡ÊM£¬ÊԱȽÏf£¨3£©+f£¨5£©Óë2f£¨4£©´óС£®
£¨2£©É躯Êýg£¨x£©=-x2£¬ÇóÖ¤£ºg£¨x£©¡ÊM£®
£¨3£©ÒÑÖªº¯Êýf£¨x£©=log2x¡ÊM£®ÊÔÀûÓô˽áÂÛ½â¾öÏÂÁÐÎÊÌ⣺ÈôʵÊým¡¢nÂú×ã2m+2n=1£¬Çóm+nµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•·îÏÍÇøһģ£©ÎÒÃǹ涨£º¶ÔÓÚÈÎÒâʵÊýA£¬Èô´æÔÚÊýÁÐ{an}ºÍʵÊýx£¨x¡Ù0£©£¬Ê¹µÃA=a1+a2x+a3x2+¡­+anxn-1£¬Ôò³ÆÊýA¿ÉÒÔ±íʾ³Éx½øÖÆÐÎʽ£¬¼ò¼ÇΪ£ºA=
.
x\¡«(a1)(a2)(a3)¡­(an-1)(an)
£®È磺A=
.
2\¡«(-1)(3)(-2)(1)
£¬Ôò±íʾAÊÇÒ»¸ö2½øÖÆÐÎʽµÄÊý£¬ÇÒA=-1+3¡Á2+£¨-2£©¡Á22+1¡Á23=5£®
£¨1£©ÒÑÖªm=£¨1-2x£©£¨1+3x2£©£¨ÆäÖÐx¡Ù0£©£©£¬ÊÔ½«m±íʾ³Éx½øÖƵļò¼ÇÐÎʽ£®
£¨2£©ÈôÊýÁÐ{an}Âú×ãa1=2£¬ak+1=
1
1-ak
£¬k¡ÊN*
£¬bn=
.
2\¡«(a1)(a2)(a3)¡­(a3n-2)(a3n-1)(a3n)
£¨n¡ÊN*£©£®ÇóÖ¤£ºbn=
2
7
8n-
2
7
£®
£¨3£©Èô³£ÊýtÂú×ãt¡Ù0ÇÒt£¾-1£¬dn=
.
t\¡«(
C
1
n
)(
C
2
n
)(
C
3
n
)¡­(
C
n-1
n
)(
C
n
n
)
£¬Çó
lim
n¡ú¡Þ
dn
dn+1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸