| A. | -4 | B. | 2 | C. | 8 | D. | $-\frac{10}{3}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x+3y+5≥0\\ x+y-1≤0\\ x+a≥0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x+a=0}\\{x+3y+5=0}\end{array}\right.$,解得:A(-a,$\frac{a-5}{3}$),
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A时,直线在y轴上的截距最小,z有最小值为$-a+2×\frac{a-5}{3}=\frac{-a-10}{3}=-6$,
即a=8.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{x}$ | B. | y=$\frac{1}{\sqrt{x}}$ | C. | y=$\frac{1}{x}$ | D. | y=x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤0} | B. | {x|-1≤x<0} | C. | {x|-1≤x≤1} | D. | {x|x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{16}$ | B. | $\frac{1}{16}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com