分析 由已知角α的范围求出$2α-\frac{π}{4}$的范围,再由已知结合平方关系求出$sin(2α-\frac{π}{4})$的值,利用两角和的余弦求得cos2α.
解答 解:∵$\frac{π}{8}<α<\frac{π}{2}$,
∴0<2$α-\frac{π}{4}$$<\frac{3π}{4}$,
又$cos(2α-\frac{π}{4})=\frac{3}{5}$,
∴sin($2α-\frac{π}{4}$)=$\sqrt{1-(\frac{3}{5})^{2}}=\frac{4}{5}$,
∴cos2α=cos[($2α-\frac{π}{4}$)+$\frac{π}{4}$]=cos($2α-\frac{π}{4}$)•cos$\frac{π}{4}$-sin($2α-\frac{π}{4}$)•sin$\frac{π}{4}$
=$\frac{3}{5}×\frac{\sqrt{2}}{2}-\frac{4}{5}×\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$.
故答案为:$-\frac{{\sqrt{2}}}{10}$.
点评 本题考查两角和与差的余弦函数,关键是“拆角配角”思想的运用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | -4 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-32,0) | B. | (-16,0) | C. | (-8,0) | D. | (-4,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 2 | C. | 8 | D. | $-\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com