精英家教网 > 高中数学 > 题目详情
2.若$cos(2α-\frac{π}{4})=\frac{3}{5}$,$\frac{π}{8}<α<\frac{π}{2}$,则cos2α=$-\frac{\sqrt{2}}{10}$.

分析 由已知角α的范围求出$2α-\frac{π}{4}$的范围,再由已知结合平方关系求出$sin(2α-\frac{π}{4})$的值,利用两角和的余弦求得cos2α.

解答 解:∵$\frac{π}{8}<α<\frac{π}{2}$,
∴0<2$α-\frac{π}{4}$$<\frac{3π}{4}$,
又$cos(2α-\frac{π}{4})=\frac{3}{5}$,
∴sin($2α-\frac{π}{4}$)=$\sqrt{1-(\frac{3}{5})^{2}}=\frac{4}{5}$,
∴cos2α=cos[($2α-\frac{π}{4}$)+$\frac{π}{4}$]=cos($2α-\frac{π}{4}$)•cos$\frac{π}{4}$-sin($2α-\frac{π}{4}$)•sin$\frac{π}{4}$
=$\frac{3}{5}×\frac{\sqrt{2}}{2}-\frac{4}{5}×\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$.
故答案为:$-\frac{{\sqrt{2}}}{10}$.

点评 本题考查两角和与差的余弦函数,关键是“拆角配角”思想的运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若抛物线y2=2px的焦点与双曲线$\frac{x^2}{6-k}+\frac{y^2}{2-k}$=1的右焦点重合,则p的值为(  )
A.4B.2C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既不是奇函数也不是偶函数的是(  )
A.y=lnxB.y=xC.y=-x3D.y=ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}x,x≤0\\{x^2}-4x,x>0\end{array}\right.$,若关于x的方程f(x)=m恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是(  )
A.(-32,0)B.(-16,0)C.(-8,0)D.(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足:$\left\{\begin{array}{l}x+3y+5≥0\\ x+y-1≤0\\ x+a≥0\end{array}\right.$,若z=x+2y的最小值为-6,则实数a=(  )
A.-4B.2C.8D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个焦点与抛物线y2=4x的焦点重合,则双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为$\frac{{x}^{2}}{\frac{1}{5}}-\frac{{y}^{2}}{\frac{4}{5}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是任意非零平面向量,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,如果x1,x2是方程$\overrightarrow{a}$x2+$\overrightarrow{b}$x+$\overrightarrow{c}$=$\overrightarrow{0}$(x∈R)的两个实数根,试用反证法证明x1=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x(4-x).
(I)若函数f(x)在区间(m,m+1)上单调递增,求实数m的取值范围;
(Ⅱ)如果函数f(x)在区间[n,m]上的值域是[log2(n+2),log2(m+2)],试求实数m的值;
(Ⅲ)如果函数f(x)在区间(0,m]上的值域是(-∞,log2(λm2].求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x2+xlna+2,曲线y=f(x)在点(0,2)处切线与x轴交点的横坐标为-2.
(1)求a:
(2)当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点,求x的取值范围.

查看答案和解析>>

同步练习册答案