精英家教网 > 高中数学 > 题目详情

在三角形ABC中,sinA•cosB=0,则三角形ABC是________(填三角形的形状)

直角三角形
分析:根据两数相乘积为0,两因式中至少有一个为0,得到sinA=0或cosB=0,又根据A和B都为三角形的内角,得到sinA不能为0,故cosB=0,由B的范围即可求出B为90°,进而得到三角形为直角三角形.
解答:∵sinA•cosB=0,
又A∈(0,180°),B∈(0,180°),
∴sinA≠0,cosB=0,
∴B=90°,
则三角形ABC是直角三角形.
点评:此题考查了三角形形状的判断,用到的知识有特殊角的三角函数值,以及a•b=0则a与b中至少有一个为0,学生做题时注意利用三角形内角的范围舍去sinA=0,得到cosB=0,从而利用特殊角的三角函数值得到B的度数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,a=2,C=
π
4
,cos
B
2
=
2
5
5
,求三角形ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,a=2,C=
π
4
,cos
B
2
=
2
5
5
,则三角形ABC的面积S=
8
7
8
7

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,a,b,c分别是角A,B,C的对边,且满足
m
=(2b-c,cosC),
n
=(a,cosA)且
m
n

(1)求角A的大小;
(2)若a=4,三角形ABC的面符号为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,内角A、B、C的对边分别为a、b、c,若三角形ABC的面积S=
3
4
(a2+b2-c2)
,则C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,点D是BC的中点,点E在AB上,且AE:EB=1:2,AD与CE相交于点F,则
S△ABCS△FED
=
 
.(填最简分数或整数)

查看答案和解析>>

同步练习册答案