| A. | 5 | B. | 6 | C. | 3 | D. | 4 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案
解答 解:由约束条件约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,作出可行域如图,![]()
易得A(2,3),由$\left\{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}\right.$
可得B(0,2)
化目标函数z=x-y为y=x-z,
由图可知,当直线y=x-z过B时,直线在y轴上的截距最大,
z有最小值为-2.
当直线y=x-z过(2,0)时,直线在y轴上的截距最小,
z有最大值为2.
则z=x-y的最大值与最小值之差为:4;
故选D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com