精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}满足已知等差数列{ an }满足a2=0,a6+a8=-10
(I)求数列{an }的通项公式;
(II)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和.

分析 (I)设等差数列{an }的公差为d,顶点关于首项和公差的方程组解之;
(II)设数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和为Sn,利用错位相减法求和.

解答 解:(I)设等差数列{an }的公差为d,由已知条件可得$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{2{a}_{1}+12d=-10}\end{array}\right.$
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=-1}\end{array}\right.$,
故数列{an }的通项公式为an=2-n;    …(6分)
(II)设数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和为Sn,即Sn=${a}_{1}+\frac{{a}_{2}}{2}+…+\frac{{a}_{n}}{{2}^{n-1}}$,S1=a1=1,
$\frac{{S}_{n}}{2}=\frac{{a}_{1}}{2}+\frac{{a}_{2}}{4}+…+\frac{{a}_{n-1}}{{2}^{n-1}}+\frac{{a}_{n}}{{2}^{n}}$…(8分)
所以,当n>1时,两式相减得到$\frac{{S}_{n}}{2}={a}_{1}+\frac{{a}_{2}-{a}_{1}}{2}+…+\frac{{a}_{n}-{a}_{{a}_{n-1}}}{{2}^{n-1}}-\frac{{a}_{n}}{{2}^{n}}$
=1-($\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=1-(1-$\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=$\frac{n}{{2}^{n}}$  …(12分)
所以${S}_{n}=\frac{n}{{2}^{n-1}}$                            …(13分)
综上,数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和为$\frac{n}{{2}^{n-1}}$.    …(14分)

点评 本题考查了等差数列的通项公式的求法以及利用错位相减法求数列的前n项和;经常考查,注意掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在一次奥运会比赛中,抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如表:
运动员第1次第2次第3次第4次第5次
8.79.19.08.99.3
8.99.09.18.89.2
试用统计学知识分析甲、乙两位射击运动员的5次训练成绩的稳定性参考公式:方差s2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x为x1,x2,…,xn的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知甲、乙两组数据如茎叶图所示,若它们的中位数和平均数都相同,且ma+nb=1(a,b∈R+),则$\frac{1}{2a}+\frac{3}{b}$的最小值为(  )
A.36B.32C.$4\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{tanα}{tanα-1}=-1$,求下列各式的值
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)若α 是第三象限角,求$cos(-π+α)+cos(\frac{π}{2}+α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,则z=x-y的最大值与最小值之差为(  )
A.5B.6C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的两个焦点为F1,F2,过F1的直线交椭圆于A、B两点,若|AB|=6,则|AF2|+|BF2|的值为(  )
A.10B.8C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知矩形ABCD的顶点都在半径为4的球面上,且AB=6,$BC=2\sqrt{3}$,则棱锥O-ABCD的体积为(  )
A.$8\sqrt{3}$B.$8\sqrt{2}$C.$6\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax3-$\frac{3}{2}$x2+1存在唯一的零点x0,且x0<0,则实数a的取值范围是(  )
A.(-∞,-$\frac{\sqrt{2}}{2}$)B.(-∞,-2)C.($\frac{1}{2}$,+∞)D.($\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.
(1)当|PF|=2时,求点P的坐标;
(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案