17£®ÔÚÒ»´Î°ÂÔË»á±ÈÈüÖУ¬³éÑùͳ¼Æ¼×¡¢ÒÒÁ½Î»Éä»÷Ô˶¯Ô±µÄ5´ÎѵÁ·³É¼¨£¨µ¥Î»£º»·£©£¬½á¹ûÈç±í£º
Ô˶¯Ô±µÚ1´ÎµÚ2´ÎµÚ3´ÎµÚ4´ÎµÚ5´Î
¼×8.79.19.08.99.3
ÒÒ8.99.09.18.89.2
ÊÔÓÃͳ¼ÆÑ§ÖªÊ¶·ÖÎö¼×¡¢ÒÒÁ½Î»Éä»÷Ô˶¯Ô±µÄ5´ÎѵÁ·³É¼¨µÄÎȶ¨ÐԲο¼¹«Ê½£º·½²îs2=$\frac{1}{n}$[£¨x1-x£©2+£¨x2-x£©2+¡­+£¨xn-x£©2]£¬ÆäÖÐxΪx1£¬x2£¬¡­£¬xnµÄƽ¾ùÊý£®

·ÖÎö ·Ö±ðÇó³ö¼×¡¢ÒÒÁ½Î»Éä»÷Ô˶¯Ô±µÄƽ¾ù³É¼¨ºÍ·½²î£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º$\bar x$¼×=$\frac{8.7+9.1+9.0+8.9+9.3}{5}$=9.0£¬¡­£¨2·Ö£©
$\bar x$ÒÒ=$\frac{8.9+9.0+9.1+8.8+9.2}{5}$=9.0£¬¡­£¨4·Ö£©
S2¼×=$\frac{1}{5}$[£¨8.7-9.0£©2+£¨9.1-9.0£©2+£¨9.0-9.0£©2+£¨8.9-9.0£©2+£¨9.3-9.0£©2]=0.04£¬¡­£¨7·Ö£©
S2ÒÒ=$\frac{1}{5}$[£¨8.9-9.0£©2+£¨9.0-9.0£©2+£¨9.1-9.0£©2+£¨8.8-9.0£©2+£¨9.2-9.0£©2]=0.02£¬¡­£¨10·Ö£©
S2ÒÒ£¼S2¼×£¬
¡à³É¼¨½ÏΪÎȶ¨µÄÔ˶¯Ô±Òҳɼ¨µÄ·½²îΪ0.02£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é·½²îµÄÓ¦Óã¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ·½²îÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ö±Ïß3x+y-6=0±»Ô² x2+£¨y-1£©2=5½ØµÃµÄÏÒ³¤µÈÓÚ$\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=tcos¦Á\\ y=-\frac{{\sqrt{2}}}{2}+tsin¦Á\end{array}$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{6}}$£©£®
£¨¢ñ£©Ð´³öÔ²CµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèlÓëC½»ÓÚA£¬BÁ½µã£¬ÏÒ|AB|=$\sqrt{5}$£¬ÇóÖ±ÏßlµÄÇãб½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªP£¨2£¬1£©ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1ÄÚÒ»µã£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{3}$£¬ÔòÍÖÔ²ÒÔPΪÖеãµÄÏÒËùÔÚÖ±Ïß·½³ÌÊÇ16x+9y-41=0£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒacosC£¬bcosA£¬ccosA³ÉµÈ²îÊýÁУ®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Èôa=3£¬$\overrightarrow{AD}=\frac{1}{2}£¨\overrightarrow{AB}+\overrightarrow{AC}£©$£¬Çó$|\overrightarrow{AD}|$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®²»µÈʽ3x+2y-6¡Ý0±íʾµÄÆ½ÃæÇøÓòÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÊýÁÐ{an}Êǹ«±ÈΪÕýÊýµÄµÈ±ÈÊýÁУ¬a1=2£¬a3=a2+4£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°Ç°nÏîºÍSn£»
£¨2£©ÈôÊýÁÐ{bn}ÊÇÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬Éècn=an+bn£¬ÇóÊýÁÐ{cn }µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁÐËĸö½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®lg2•lg3=lg5B£®Èôsin¦È=$\frac{1}{2}$£¬Ôò¦È=30¡ã
C£®$\root{n}{{a}^{n}}$=aD£®logax-logay=loga$\frac{x}{y}$£¨x£¾0£¬y£¾0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãÒÑÖªµÈ²îÊýÁÐ{ an }Âú×ãa2=0£¬a6+a8=-10
£¨I£©ÇóÊýÁÐ{an }µÄͨÏʽ£»
£¨II£©ÇóÊýÁÐ{$\frac{{a}_{n}}{{2}^{n-1}}$}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸