分析 找出圆心坐标和半径r,利用点到直线的距离公式求出圆心到直线l的距离d,根据垂径定理由垂直得中点,再利用勾股定理即可求出弦长.
解答 解:x2+(y-1)2=5的圆心坐标为(0,1),半径r=$\sqrt{5}$,
∴圆心到直线3x+y-6=0的距离d=$\frac{5}{\sqrt{10}}$=$\frac{\sqrt{10}}{2}$,
则直线l被圆截得的弦长=2$\sqrt{5-\frac{5}{2}}$=$\sqrt{10}$,
故答案为:$\sqrt{10}$.
点评 当直线与圆相交时,常常根据垂径定理由垂直得中点,然后由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{e}$,+∞) | B. | $[-\frac{1}{e}$,+∞) | C. | (0,e) | D. | $[-\frac{1}{e}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>0,则2a>1 | B. | 若x2+y2=0,则x=y=0 | ||
| C. | 若b2=ac,则a,b,c成等比数列 | D. | 若sinα=sinβ,则不一定有α=β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 运动员 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| 甲 | 8.7 | 9.1 | 9.0 | 8.9 | 9.3 |
| 乙 | 8.9 | 9.0 | 9.1 | 8.8 | 9.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com