精英家教网 > 高中数学 > 题目详情
(2009•锦州一模)已知数列{an}满足a1+3a2+32a3+…+3n-1an=
n
2
,则an=
1
2•3n-1
1
2•3n-1
分析:由已知a1+3a2+32a3+…+3n-1an=
n
2
,可得a1+3a2+32a3+…+3n-2an-1=
n-1
2
,两式相减可得3n-1an=
1
2
,可得结果.
解答:解:∵a1+3a2+32a3+…+3n-1an=
n
2
    ①
a1+3a2+32a3+…+3n-2an-1=
n-1
2
    ②
①-②得,3n-1an=
n
2
-
n-1
2
=
1
2

an=
1
2•3n-1

故答案为:
1
2•3n-1
点评:本题考查数列的基本运算,构造两式相减是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•锦州一模)设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子.现将这五个球投放到五个盒子内,要求每个盒内放1个球,并且恰好有两个球的编号与盒子编号相同,则这样的投放方法总数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)一个几何体的三视图如图所示,则该几何体的表面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)命题“?x∈R,x3-x2+1≤0”的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)若a,b是常数,则“a>0且b2-4a<0”是“对任意x∈R,有ax2+bx+1>0”的(  )

查看答案和解析>>

同步练习册答案