精英家教网 > 高中数学 > 题目详情
我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).
187
设所求轨道方程为.
.
于是 .
 所求轨道方程为 .        
设变轨时,探测器位于,则
,       
解得 (由题意).    
 探测器在变轨时与火星表面的距离为
.  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题 12分).过点A(-4,0)向椭圆引两条切线,切点分别为B,C,且为正三角形.
(Ⅰ)求最大时椭圆的方程;
(Ⅱ)对(Ⅰ)中的椭圆,若其左焦点为,过的直线轴交于点,与椭圆的一个交点为,且求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有如下结论:“圆上一点处的切线方程为”,类比也有结论:“椭圆处的切线方程为”,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;
(2)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点和短轴的两端点正好是一正方形的四个顶点,且焦点到椭圆上一点的最近距离为.
(1)求椭圆的标准方程;
(2)设P是椭圆上任一点,MN 是圆C:的任一条直径,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知倾斜角为的直线过椭圆的右焦点,则被椭圆所截的弦长
是                                                            (   )
A. B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线的长度是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左焦点为,左准线为,点线段交椭圆于点,若,则_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,定义点之间的“直角距离”为。若到点的“直角距离”相等,其中实数满足,则所有满足条件的点的轨迹的长度之和为

查看答案和解析>>

同步练习册答案