精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,底面ABCD是梯形,且AD的中点为E,则四棱锥外接球的表面积为________.

【答案】

【解析】

由已知得,是直角梯形,,那么DEBC是正方形,由平面,可知平面,可解得PB,可知是等边三角形,外接球的球心四点距离相等,设在平面的投影为,根据勾股定理可知点H是对角线的交点,在中可得,过,再根据,可求出,由外接球面积公式即得。

由题得,,又四边形是正方形,平面,又平面,所以.则有,即,解得.球心四点距离相等,设在平面的投影为,那么,设,则有,又.是正方形,平面上且到四点距离相等的点即为正方形的对称中心,即对角线的交点,则..过平面平面,即是点在平面的投影.是等边三角形,,与联立解得,则.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知AB是椭圆C)的左右顶点,P点为椭圆C上一点,点P关于x轴的对称点为H,且

1)若椭圆C经过了圆的圆心,求椭圆C的标准方程;

2)在(1)的条件下,抛物线D的焦点F与点关于y轴上某点对称,且抛物线D与椭圆C在第四象限交于点Q,过点Q作直线与抛物线D有唯一公共点,求该直线与两坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中美组织的暑假中学生交流会结束时,中方组织者将孙悟空、猪八戒、沙和尚、唐三藏、白龙马的彩色陶俑各一个送给来中国参观的美国中学生汤姆、杰克、索菲娅,每个人至少一个,且猪八戒的彩色陶俑不能送给索菲娅,则不同的送法种数为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:

①直线是函数图象的一条对称轴;

②点是函数的一个对称中心;

③函数的图象的所有交点的横坐标之和为

其中所有正确的判断是(

A.①②B.①③C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某湿地公园的鸟瞰图是一个直角梯形,其中:1千米,千米,公园内有一个形状是扇形的天然湖泊,扇形长为半径,弧为湖岸,其余部分为滩地,BD点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段线段,其中Q在线段上(异于线段端点),与弧相切于P点(异于弧端点]根据市场行情段的建造费用是每千米10万元,湖岸段弧的建造费用是每千米万元(步行道的宽度不计),设弧度观光步行道的建造费用为万元.

1)求步行道的建造费用关于的函数关系式,并求其走义域;

2)当为何值时,步行道的建造费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与曲线C)交于不同的两点ABO为坐标原点.

1)若,求证:曲线C是一个圆;

2)若曲线C,是否存在一定点Q,使得为定值?若存在,求出定点Q和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,平面分别为线段上的点,且

I)证明:平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);

(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为优秀等次,则根据频率分布直方图估计该校高一学生数学成绩达到优秀等次的人数.

查看答案和解析>>

同步练习册答案