【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);
(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为“优秀”等次,则根据频率分布直方图估计该校高一学生数学成绩达到“优秀”等次的人数.
【答案】(1)中位数为,平均数为 (2)
【解析】
(1)设这50名学生数学成绩的中位数和平均数分别为,因为前2组的频率之和为,因为前3组的频率之和为,所以,求出即可求得答案;
(2)因为样本中90分及以上的频率为,所以该校高一年级1000名学生中,根据频率分布直方图,即可估计该校高一学生数学成绩达到人数.
“优秀”等次的人数
(1)设这50名学生数学成绩的中位数和平均数分别为
因为前2组的频率之和为,因为前3组的频率之和为,所以,
由,得.
所以,这50名学生数学成绩的中位数和平均数分别为,
(2)因为样本中90分及以上的频率为,
所以该校高一年级1000名学生中,根据频率分布直方图估计该校高一学生数学成绩达到
“优秀”等次的人数为人.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,平面ABC⊥平面BCD,△BAC与BCD均为等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是( )
A.(0,)B.[0,]C.(,)D.(,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着网络的普及,数码产品早已走进千家万户的生活,为了节约资源,促进资源循环利用,折旧产品回收行业得到迅猛发展,电脑使用时间越长,回收价值越低,某二手电脑交易市场对2018年回收的折旧电脑交易前使用的时间进行了统计,得到如图所示的频率分布直方图,在如图对时间使用的分组中,将使用时间落入各组的频率视为概率.
(1)若在该市场随机选取3个2018年成交的二手电脑,求至少有2个使用时间在上的概率;
(2)根据电脑交易市场往年的数据,得到如图所示的散点图,其中(单位:年)表示折旧电脑的使用时间,(单位:百元)表示相应的折旧电脑的平均交易价格.
(ⅰ)由散点图判断,可采用作为该交易市场折旧电脑平均交易价格与使用年限的回归方程,若,,选用如下参考数据,求关于的回归方程.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
(ⅱ)根据回归方程和相关数据,并用各时间组的区间中点值代表该组的值,估算该交易市场收购1000台折旧电脑所需的费用
附:参考公式:对于一组数据
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,下述四个结论:
①是偶函数;
②的最小正周期为;
③的最小值为0;
④在上有3个零点
其中所有正确结论的编号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)若直线与曲线交于两点,问是否在轴上存在一点,使得当变动时总有?若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com