精英家教网 > 高中数学 > 题目详情
(2012•河南模拟)已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线l不过点M,试问kMA+kMB是否为定值?并说明理由.
分析:(Ⅰ)设出椭圆方程的标准形式,由离心率的值及椭圆过点(4,1)求出待定系数,得到椭圆的标准方程;
(Ⅱ)把直线方程代入椭圆的方程,由判别式大于0,求出m的范围;
(Ⅲ)由方程可得到两根之和、两根之积,从而可求直线MA,MB斜率之和,化简可得结论.
解答:解:(Ⅰ)∵
c
a
=
3
2
,∴
b
a
=
1
2
,-----------------------------------------------------(2分)
依题意设椭圆方程为:
x2
4b2
+
y2
b2
=1

把点(4,1)代入,得b2=5
∴椭圆方程为
x2
20
+
y2
5
=1
---------------------------------------------------(4分)
(Ⅱ)把y=x+m代入椭圆方程得:5x2+8mx+4m2-20=0,
由△>0可得64m2-20(4m2-20)>0
∴-5<m<5---------------------------------------------------(6分)
(Ⅲ)设A(x1,y1),B(x2,y2),则x1+x2=-
8m
5
,x1x2=
4m2-20
5
,-----------------------(8分)
∴kMA+kMB=
y1-1
x1-4
+
y2-1
x2-4
=
2x1x2-(m-5)(x1+x2)-8(m-1)
(x1-4)(x2-4)
=0,
∴kMA+kMB为定值0.------------------(12分)
点评:本题考查用待定系数法求椭圆的标准方程,一元二次方程根与系数的关系,体现了等价转化的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河南模拟)如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)己知i为虚数单位,则
i
1+i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知a,b,c分别是△ABC的三个内角A,B,C的对边,若c=2,b=
3
,A+C=3B,则sinC=
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)若函数f(x)的导函数f′(x)=x2-4x+3,则使得函数f(x-1)单调递减的一个充分不必要条件是x∈(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)选修4-5:不等式选讲
设f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若关于x的不等式f(x)+|2t-3|≤0有解,求参数t的取值范围.

查看答案和解析>>

同步练习册答案