精英家教网 > 高中数学 > 题目详情

若抛物线C1:y2=2Px(p>0)与双曲线C2)有相同的焦点F,点A是两曲线的一个交点,且AF⊥X轴,记θ为双曲线C2的一条渐近线的倾斜角,则θ所在的区间是(  )

A.(0,)             B.()           C.()          D.(

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点Q是抛物线C1:y2=2px(P>0)上异于坐标原点O的点,过点Q与抛物线C2:y=2x2相切的两条直线分别交抛物线C1于点A,B.
(Ⅰ)若点Q的坐标为(1,-6),求直线AB的方程及弦AB的长;
(Ⅱ)判断直线AB与抛物线C2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4x,圆C2:(x-1)2+y2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B,C两点,如图.
(1)求|AB|•|CD|的值;
(2)是否存在直线l,使kOA+kOB+kOC+kOD=3
2
,且|AB|,|BC|,|CD|依次成等差数列,若存在,求出所有满足条件的直线l;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案