精英家教网 > 高中数学 > 题目详情
8.(1)已知x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$=2,求x+x-1的值;
(2)计算:($\frac{1}{16}$)${\;}^{-\frac{1}{4}}$-3${\;}^{lo{g}_{3}2}$(log34)•(log827)+2log12$\sqrt{3}$+log${\;}_{\frac{1}{12}}$$\frac{1}{4}$的值.

分析 (1)根据指数幂的运算性质计算即可,
(2)根据指数幂和对数的运算性质计算即可.

解答 解:(1)∵x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$=2,
(x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$)2=22
∴${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=2,
∴(${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$)2=4,
∴x+x-1=2
(2)原式=($\frac{1}{2}$)${\;}^{4×(-\frac{1}{4})}$-2•$\frac{2lg2}{lg3}$•$\frac{3lg3}{3lg2}$+log123+log124=2-4+1=-1

点评 本题考查了指数幂和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.“?x∈[1,2],x2-a≥0“是真命题,则实数a的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁UA)∪B={0,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:$a_n^2={a_{n-1}}•{a_{n+1}}(n≥2)$且a2+2a1=4,$a_3^2={a_5}$.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=$\frac{x}{2x-1}$在点(1,1)处的切线方程为(  )
A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合$P=\left\{{x|{1-\frac{x-1}{3}}|≤2}\right\}\;,\;\;Q=\left\{{x|{x^2}-2x+({1-{m^2}})≤0}\right\}$,其中m>0,全集U=R.若“x∈∁UP”是“x∈∁UQ”的必要不充分条件,则实数m的取值范围为[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)在[a,b]上有意义,若对任意x1、x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P,现给出如下命题:
①f(x)=$\frac{1}{x}$在[1,3]上具有性质P;
②若f(x)在区间[1,3]上具有性质P,则f(x)不可能为一次函数;
③若f(x)在区间[1,3]上具有性质P,则f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④若f(x)在区间[1,3]上具有性质P,则对任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
其中真命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC中,若a=1,b=2,sinA=$\frac{1}{3}$,则sinB=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴端点与椭圆的两个焦点所构成的三角形面积为1,过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的方程;
(2)是否存在定点$E(0,\frac{11}{4})$,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值.若存在求出这个定值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案