精英家教网 > 高中数学 > 题目详情

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:

测试指标

元件A

元件B

(Ⅰ)试分别估计元件A,元件B为正品的概率;

(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,

(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;

(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

 

【答案】

(Ⅰ)   (Ⅱ)(ⅰ)66   (ⅱ)

【解析】

试题分析:(Ⅰ)解:元件A为正品的概率约为.        

元件B为正品的概率约为.               

(Ⅱ)解:(ⅰ)随机变量的所有取值为.         

;     

;     .    

所以,随机变量的分布列为:

.             

(ⅱ)设生产的5件元件B中正品有件,则次品有件.

依题意,得 , 解得

所以 ,或. 

设“生产5件元件B所获得的利润不少于140元”为事件

考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.

点评:熟练掌握分类讨论的思想方法、古典概型的概率计算公式、相互独立事件的概率计算公式、数学期望的定义、二项分布列的计算公式是解题的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一种元件B,若是正品可盈利50元,若是次品则亏损10元,记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 [70,76) [70,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(1)试分别估计元件A,元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利80元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下.
(i)求生产5件元件B所获得的利润不少于280元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省六校教育研究会高三2月联考理科数学试卷(解析版) 题型:解答题

生产AB两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82

次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标

元件A

8

12

40

32

8

元件B

7

18

40

29

6

试分别估计元件A、元件B为正品的概率;

生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在的前提下;

i)求生产5件元件B所获得的利润不少于300元的概率;

ii)记X为生产1件元件A1件元件B所得的总利润,求随机变量X的分布列和数学期望

 

查看答案和解析>>

同步练习册答案