精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(sinx,cosx),数学公式=(cosx,-cosx),设函数f(x)=数学公式•(数学公式+数学公式).
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若函数g(x)=f(x)-k,数学公式,其中k∈R,试讨论函数g(x)的零点个数.

解:(1)函数f(x)=•(+)=(sinx,cosx)•(sinx+cosx,0)
=sin2x+sinxcosx=+=
所以函数的最小正周期为:π.
(2)因为函数 ,由 ,即
所以函数的单调增区间为:
(3),所以

函数g(x)=f(x)-k=-k,,其中k∈R,
当k时,零点为0个;
时函数有两个零点,
时,函数有一个零点;
分析:(1)通过向量的数量积求出函数的表达式,利用二倍角公式以及两角和的正弦函数化为一个角的一个三角函数的形式,即可求出函数的最小正周期.
(2)利用正弦函数的单调增区间,直接求出函数的单调增区间即可.
(3)求出函数在时函数的取值范围,即可根据函数的零点的判断方法推出函数零点的个数.
点评:本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),向量
b
=(1,
3
)
,则|
a
+
b
|的最大值为(  )
A、3
B、
3
C、1
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(sinx+2cosx,3cosx),f(x)=
a
b
,x∈R.求
(Ⅰ)函数f(x)的最大值及取得最大值的自变量x的集合;
(Ⅱ)函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•衢州一模)已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1).
(I)当向量
a
与向量
b
共线时,求tanx的值;
(II)求函数f(x)=2(
a
+
b
)•
b
图象的一个对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)已知向量
m
=(sinx,-cosx),
n
=(cosθ,-sinθ),其中0<θ<π.函数f(x)=
m
n
在x=π处取最小值.
(Ⅰ)求θ的值;
(Ⅱ)设A,B,C为△ABC的三个内角,若sinB=2sinA,f(C)=
1
2
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx+sinx,
3
cosx),  
b
=(cosx-sinx,2sinx)
,记f(x)=
a
b
,  x∈R

(1)求函数f(x)的最小正周期.
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=1,且a=1,b+c=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案