精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,cosx),向量
b
=(1,
3
)
,则|
a
+
b
|的最大值为(  )
A、3
B、
3
C、1
D、9
分析:先求出|
a
+
b
|
2
,再将三角函数化简,用三角函数的有界性求得最大值.
解答:|
a
+
b
|
2
=
a
2
+2
a
b
b
2
=1+2(sinx+
3
cosx)+4)=5+4sin(x+
π
3

∴当x+
π
3
=kπ+
π
2
时,|
a
+
b
|
2
的最大值为9
|
a
+
b
|
的最大值为3
故选项为A
点评:向量模的求法:向量模的平方等于向量的平方,
三角函数的一个重要公式:asinx+bcosx=
a2+b2
sin(x+θ)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案