精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.
分析:(I)利用共线向量的坐标运算即可求得tanθ值;
(Ⅱ)利用两角和与差的正弦公式及同角三角函数间的基本关系将所求关系式化简为
sinθ+2cosθ
cosθ-sinθ
,再弦化切即可.
解答:解:(I)∵
a
b

sinθ
2
=
cosθ
1
…2分
∴tanθ=2…4分
(Ⅱ)
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ

=
2
(sinθ•
2
2
+
2
2
cosθ)(sinθ+2cosθ)
cos2θ-sin2θ
…6分
=
(sinθ+cosθ)(sinθ+2cosθ)
(cosθ+sinθ)(cosθ-sinθ)
…8分
=
sinθ+2cosθ
cosθ-sinθ
=
tanθ+2
1-tanθ
…10分
=
2+2
1-2
=-4…12分
点评:本题考查共线向量的坐标运算,考查用两角和与差的正弦公式及同角三角函数间的基本关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案