¶ÔÓÚ¶¨ÒåÔÚ¼¯ºÏDÉϵĺ¯Êýy=f£¨x£©£¬Èôf£¨x£©ÔÚDÉϾßÓе¥µ÷ÐÔ£¬ÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¨ÆäÖÐa£¼b£©£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬
f£¨x£©µÄÖµÓòÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄÕýº¯Êý£¬Çø¼ä[a£¬b]³ÆΪf£¨x£©µÄ¡°µÈÓòÇø¼ä¡±£®
£¨1£©ÒÑÖªº¯Êýf(x)=
x
ÊÇ[0£¬+¡Þ£©ÉϵÄÕýº¯Êý£¬ÊÔÇóf£¨x£©µÄµÈÓòÇø¼ä£®
£¨2£©ÊÔ̽¾¿ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹º¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý£¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÒòΪf(x)=
x
ÔÚ[0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ËùÒÔµ±x¡Ê[a£¬b]£¬f£¨x£©µÄÖµÓòÊÇ[f£¨a£©£¬f£¨b£©]£¬ÓÉ´ËÄÜÇó³öf£¨x£©µÄµÈÓòÇø¼ä£®
£¨2£©Éè´æÔÚʵÊýk£¬Ê¹º¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉÏΪ¼õº¯Êý£®µ±x¡Ê[a£¬b]ʱ£¬g£¨x£©µÄÖµÓòÊÇ[g£¨a£©£¬g£¨b£©]£¬Èôº¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý£¬Ôò
g(a)=b
g(b)=a
£®ÓÉ´ËÄܹ»µ¼³ö´æÔÚʵÊýk¡Ê(-1£¬-
3
4
)
£¬Ê¹º¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý£®
½â´ð£º½â£º£¨1£©ÒòΪf(x)=
x
ÔÚ[0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý
ËùÒÔµ±x¡Ê[a£¬b]£¬f£¨x£©µÄÖµÓòÊÇ[f£¨a£©£¬f£¨b£©]£¬
ÓÖf(x)=
x
ÊÇ[0£¬+¡Þ£©ÉϵÄÕýº¯Êý
¡à
f(a)=a
f(b)=b
b£¾a¡Ý0
a
=a
b
=b
b£¾a¡Ý0
£¬
¡àa=0£¬b=1£¬
¡àf£¨x£©µÄµÈÓòÇø¼äΪ[0£¬1]£®¡­£¨4·Ö£©
£¨2£©Éè´æÔÚʵÊýk£¬Ê¹º¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉÏΪ¼õº¯Êý£®
¡àµ±x¡Ê[a£¬b]ʱ£¬g£¨x£©µÄÖµÓòÊÇ[g£¨a£©£¬g£¨b£©]£¬
Èôº¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý£¬
Ôò
g(a)=b
g(b)=a
£¬
¼´
a2+k=b
b2+k=a
a2-b2=b-a
£¬
¡ßa¡Ùb£¬¡àa+b=-1¼´b=-a-1£¬
¡ßa£¼b£¼0¼´a£¼-a-1£¼0⇒-1£¼a£¼-
1
2
¡­£¨8·Ö£©
¡à¹ØÓÚaµÄ·½³Ìa2+a+k+1=0ÔÚÇø¼ä(-1£¬-
1
2
)
ÄÚÓÐʵ¸ù£¬
ÓÉa2+a+k+1=0µÃk+1=-a2-a¡­£¨10·Ö£©£¬
¡ßº¯Êýy=-a2-aÔÚ(-1£¬-
1
2
)
ÉÏΪÔöº¯Êý£¬
¡àµ±a¡Ê(-1£¬-
1
2
)
ʱ£¬y=-a2-a¡Ê(0£¬
1
4
)
¡­£¨12·Ö£©
¡àk+1¡Ê(0£¬
1
4
)
¼´k¡Ê(-1£¬-
3
4
)

¹Ê´æÔÚʵÊýk¡Ê(-1£¬-
3
4
)
ʹº¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éº¯Êýºã³ÉÁ¢µÄÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÔÚ¼¯ºÏDÉϵĺ¯Êýy=f£¨x£©£¬Èôf£¨x£©ÔÚDÉϾßÓе¥µ÷ÐÔ£¬ÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬f£¨x£©µÄÖµÓòÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄÕýº¯Êý£¬Çø¼ä[a£¬b]³ÆΪf£¨x£©µÄ¡°µÈÓòÇø¼ä¡±£®ÒÑÖªº¯Êýf£¨x£©=
x
ÊÇ[0£¬+¡Þ£©ÉϵÄÕýº¯Êý£¬Ôòf£¨x£©µÄµÈÓòÇø¼äΪ
[0£¬1]
[0£¬1]
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÔÚ¼¯ºÏDÉϵĺ¯Êýy=f£¨x£©£¬Èôf£¨x£©ÔÚDÉϾßÓе¥µ÷ÐÔÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¨ÆäÖÐa£¼b£©Ê¹µ±x¡Ê[a£¬b]ʱ£¬f£¨x£©µÄÖµÓòÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵġ°Õýº¯Êý¡±£¬Çø¼ä[a£¬b]³ÆΪf£¨x£©µÄ¡°µÈÓòÇø¼ä¡±£®
£¨1£©ÒÑÖªº¯Êýf£¨x£©=x3ÊÇÕýº¯Êý£¬ÊÔÇóf£¨x£©µÄËùÓеÈÓòÇø¼ä£»
£¨2£©Èôg(x)=
x+2
+k
ÊÇÕýº¯Êý£¬ÊÔÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚʵÊýa£¬b£¨a£¼b£¼1£©Ê¹µÃº¯Êýf(x)=|1-
1
x
|
ÊÇ[a£¬b]Éϵġ°Õýº¯Êý¡±£¿Èô´æÔÚ£¬Çó³öÇø¼ä[a£¬b]£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄ긣½¨Ê¡ÈýÃ÷¾ÅÖиßÈý£¨ÉÏ£©µÚÒ»´Î¶Î¿¼ÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¶ÔÓÚ¶¨ÒåÔÚ¼¯ºÏDÉϵĺ¯Êýy=f£¨x£©£¬Èôf£¨x£©ÔÚDÉϾßÓе¥µ÷ÐÔ£¬ÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬f£¨x£©µÄÖµÓòÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄÕýº¯Êý£¬Çø¼ä[a£¬b]³ÆΪf£¨x£©µÄ¡°µÈÓòÇø¼ä¡±£®ÒÑÖªº¯Êýf£¨x£©=ÊÇ[0£¬+¡Þ£©ÉϵÄÕýº¯Êý£¬Ôòf£¨x£©µÄµÈÓòÇø¼äΪ    £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013Äê¸ß¿¼Êýѧ¸´Ï°¾íD£¨¶þ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚ¶¨ÒåÔÚ¼¯ºÏDÉϵĺ¯Êýy=f£¨x£©£¬Èôf£¨x£©ÔÚDÉϾßÓе¥µ÷ÐÔ£¬ÇÒ´æÔÚÇø¼ä[a£¬b]⊆D£¨ÆäÖÐa£¼b£©£¬Ê¹µ±x¡Ê[a£¬b]ʱ£¬
f£¨x£©µÄÖµÓòÊÇ[a£¬b]£¬Ôò³Æº¯Êýf£¨x£©ÊÇDÉϵÄÕýº¯Êý£¬Çø¼ä[a£¬b]³ÆΪf£¨x£©µÄ¡°µÈÓòÇø¼ä¡±£®
£¨1£©ÒÑÖªº¯ÊýÊÇ[0£¬+¡Þ£©ÉϵÄÕýº¯Êý£¬ÊÔÇóf£¨x£©µÄµÈÓòÇø¼ä£®
£¨2£©ÊÔ̽¾¿ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹º¯Êýg£¨x£©=x2+kÊÇ£¨-¡Þ£¬0£©ÉϵÄÕýº¯Êý£¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸