Èç¹ûÊýÁÐ{an}Âú×㣺Ê×Ïîa1=1£¬ÇÒan+1=ÄÇôÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ(    )

A£®¸ÃÊýÁеÄÆæÊýÏîa1£¬a3£¬a5£¬¡­³ÉµÈ±ÈÊýÁУ¬Å¼ÊýÏîa2£¬a4£¬a6£¬¡­³ÉµÈ²îÊýÁÐ

B£®¸ÃÊýÁеÄÆæÊýÏîa1£¬a3£¬a5£¬¡­³ÉµÈ²îÊýÁУ¬Å¼ÊýÏîa2£¬a4£¬a6£¬¡­³ÉµÈ±ÈÊýÁÐ

C£®¸ÃÊýÁеÄÆæÊýÏîa1£¬a3£¬a5£¬¡­·Ö±ð¼Ó4ºó¹¹³ÉÒ»¸ö¹«±ÈΪ2µÄµÈ±ÈÊýÁÐ

D£®¸ÃÊýÁеÄżÊýÏîa2£¬a4£¬a6£¬¡­·Ö±ð¼Ó4ºó¹¹³ÉÒ»¸ö¹«±ÈΪ2µÄµÈ±ÈÊýÁÐ

´ð°¸£ºD

¡¾½âÎö¡¿ÓÉÒÑÖªÌõ¼þa1=1£¬an+1=¿Éд³ö¸ÃÊýÁеÄÇ°¼¸ÏîÈçÏ£º

N

1

2

3

4

5

6

7

8

an

1

2

4

8

10

20

22

44

ÓÉÉϱí¿ÉµÃABCÏî¾ù²»ÕýÈ·£¬Å¼ÊýÏîa2£¬a4£¬a6£¬¡­·Ö±ð¼Ó4ºó¿ÉµÃ6£¬12£¬24£¬48£¬¡­¸ÃÊýÁÐÊÇËʱÈΪ2µÄµÈ±ÈÊýÁУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•Õã½­Ä£Ä⣩Èç¹ûÊýÁÐ{an}Âú×㣺Ê×Ïîa1=1ÇÒan+1=
2an£¬nΪÆæÊý
an+2£¬nΪżÊý
ÄÇôÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûÊýÁÐ{an}Âú×ãa1£¬a2-a1£¬a3-a2£¬¡­£¬an-an-1ÊÇÊ×ÏîÊÇ1£¬¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬Ôòan=
3n-1
2
3n-1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûÊýÁÐ{an}Âú×ãa1=2£¬a2=1£¬ÇÒ
an
a
 
n-1
an-1-an
=
anan+1
an-an+1
£¬Ôò´ËÊýÁеĵÚ10ÏîΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©=x0³ÉÁ¢£¬Ôò³Æx0Ϊf£¨x£©µÄ²»¶¯µã£®Èç¹ûº¯Êýf£¨x£©=
x2+a
bx-c
£¨b£¬c¡ÊN£©ÓÐÇÒÖ»ÓÐÁ½¸ö²»¶¯µã0£¬2£¬ÇÒf£¨-2£©£¼-
1
2
£¬
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÒÑÖª¸÷ÏΪÁãµÄÊýÁÐ{an}Âú×ã4Sn•f£¨
1
an
£©=1£¬ÇóÊýÁÐͨÏîan£»
£¨3£©Èç¹ûÊýÁÐ{an}Âú×ãa1=4£¬an+1=f£¨an£©£¬ÇóÖ¤£ºµ±n¡Ý2ʱ£¬ºãÓÐan£¼3³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÄÏ»ãÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©£¬²¢¶¨ÒåÊýÁÐ{an}ÈçÏ£ºa1¡Ê£¨0£¬1£©¡¢an+1=f£¨an£©£¨n¡ÊN*£©£®Èç¹ûÊýÁÐ{an}Âú×㣺¶ÔÈÎÒân¡ÊN*£¬an+1£¾anÔòº¯Êýf£¨x£©µÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸