精英家教网 > 高中数学 > 题目详情

已知函数处的切线与轴平行.
(1)求的值和函数的单调区间;
(2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.

(1);函数的单调递增区间为的单调递减区间为;(2)的取值范围

解析试题分析:(1)首先求函数的导数,由已知条件函数处的切线与轴平行,解方程可得的值;解不等式可得函数的单调递增区间,解不等式可得函数的单调递减区间为;(2) 令,则由题意等价于有三个不同的根,即的极小值为小于0,且的极大值为大于0.因此利用导数求函数的极大极小值,列不等式组并求解即得的取值范围.
试题解析:(1),                                 (2分)
,解得.                         (3分)

的单调递增区间为的单调递减区间为
(判断过程给两分)       (7分)
(2)令,     (8分)
则原题意等价于有三个不同的根.
,                     (9分)
上递增,在上递减.       (10分)
的极小值为,且的极大值为
解得. 的取值范围.                     (13分)
考点:1.导数的几何意义;2.利用导数求函数的单调区间、极值;3.利用导数求参数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足: 
(Ⅰ)求数列{}的通项公式;
(Ⅱ)在数列中,仅最小,求的取值范围;
(Ⅲ)令函数数列满足,求证:对一切n≥2的正整数都有 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数满足,设函数
(1)当时,求的极小值;
(2)若函数)的极小值点与的极小值点相同,求证:的极大值小于等于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)判断的奇偶性并说明理由;
(2)判断在区间上的单调性,并证明你的结论;
(3)若在区间上,不等式恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
⑴求函数的单调区间;
⑵如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(其中).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求的单调区间和极值;
(2)当m为何值时,不等式 恒成立?
(3)证明:当时,方程内有唯一实根.
(e为自然对数的底;参考公式:.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是增函数,求的取值范围;
(2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.

查看答案和解析>>

同步练习册答案