精英家教网 > 高中数学 > 题目详情
定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=
F(n,2)
F(2,n)
(n∈N*),若对任意正整数n,都有an≤ak(k∈N*)成立,则ak的值为(  )
分析:根据题意可求得数列{an}的通项公式,进而求得
an+1
an
,根据2n2-(n+1)2=(n-1)2-2,进而可知当当n≥3时,(n-1)2-2>0,推断出当n≥3时数列单调增,n<3时,数列单调减,进而可知n=3时an取到最小值求得数列的最小值,进而可知ak的值.
解答:解:∵F(x,y)=yx(x>0,y>0),
∴an=
F(n,2)
F(2,n)
=
2n
n2

an+1
an
=
2n+1
(n+1)2
2n
n2
=
2 n2
(n+1)2

∵2n2-(n+1)2=(n-1)2-2,当n≥3时,(n-1)2-2>0,
∴当n≥3时an+1>an
当,n<3时,(n-1)2-2<O,所以当n<3时an+1<an
∴当n=3时an取到最小值为f(3)=
8
9

故选D
点评:本题主要考查了数列和不等式的综合运用.考查了学生综合运用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:F(x,y)=yx(x>0,y>0)
(1)解关于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)记f(x)=3•F(1,x),设Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
对n∈N*恒成立,求实数a的取值范围;
(3)记g(x)=F(x,2),正项数列an满足:a1=3,g(an+1)=8an,求数列an的通项公式,并求所有可能的乘积ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:An=
F(n,2)
F(2,n)
(n∈N+),若对任意正整数n,都有an≥ak(k∈N*成立,则ak的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
F(n,1)
F(2,n)
,若Sn为数列{
anan+1
}的前n项和,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数F(x,y)=(1+x)y,x,y∈(0,+∞).
(1)令函数f(x)=F[1,log2(x3-3x)]的图象为曲线C1求与直线4x+15y-3=0垂直的曲线C1的切线方程;
(2)令函数g(x)=F[1,log2(x3+ax2+bx+1)]的图象为曲线C2,若存在实数b使得曲线C2在x0(x0∈(1,4))处有斜率为-8的切线,求实数a的取值范围;
(3)当x,y∈N*,且x<y时,证明F(x,y)>F(y,x).

查看答案和解析>>

同步练习册答案