精英家教网 > 高中数学 > 题目详情

已在圆C1的方程是x2+(y-1)2=4,圆C的圆心坐标为(2,-1),若圆C与圆C1交于A、B两点,且|AB|=2数学公式,求圆C的方程.

解:设圆C的半径为r,圆C1的方程是x2+(y-1)2=4,与圆C的圆心坐标为(2,-1)的距离为:
ACBC1是正方形,依题意r2==4;
解得r=2.
∴圆C的方程:(x-2)2+(y+1)2=4.
圆心的连线与AB垂直,即可得到(0,3)与(-2,1)的弦长为
所以圆的方程为:(x-2)2+(y+1)2=20;
所求圆的方程为:(x-2)2+(y+1)2=20或(x-2)2+(y+1)2=4.

分析:画出图形,容易得到:弦心距、半径、半弦长的关系,求得圆C的半径r,求得方程.
点评:本题考查圆与圆的位置关系及圆的方程的确定,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
    线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  
 s所在直线平分线段s1  

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+D1x+8y-8=0,圆C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圆C1与圆C2的公共弦所在的直线l1的方程;
(2)在(1)的条件下,已知P(-3,m)是直线l1上一点,过点P分别作直线与圆C1、圆C2相切,切点为A、B,求证:|PA|=|PB|;
(3)将圆C1、圆C2的方程相减得一直线l2:(D1-D2)x+12y-6=0.Q是直线l2上,且在圆C1、圆C2外部的任意一点.过点Q分别作直线QM、QN与圆C1、圆C2相切,切点为M、N,试探究|QM|与|QN|的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)-f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东模拟)已知椭圆C1
y2
a2
+
x2
b2
=1
(a>b>0)的右顶点A(1,0),一个焦点与点A、B构成等边三角形.
(I) 求椭圆C1的方程;
(II) 设点P是抛物线C2:y=x2+h(h∈R)与C1的公共点,C2在点P处的切线与C1交于点另一点M.Q是P关于X轴的对称点,问中否存在h使点Q在以PM为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)-f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是


  1. A.
    与圆C1重合
  2. B.
    与圆C1同心圆
  3. C.
    过P1且与圆C1圆心相同的圆
  4. D.
    过P2且与圆C1圆心相同的圆

查看答案和解析>>

同步练习册答案