精英家教网 > 高中数学 > 题目详情
在二项式(2
x
+
1
4x
)n
的展开式中,前三项的系数成等差数列,则该二项式展开式中x-2项的系数为(  )
A、1B、4C、8D、16
考点:二项式定理
专题:二项式定理
分析:先求出二项式展开式的通项公式,再令x的幂指数等于0-2,求得r的值,即可求得展开式中x-2项的系数.
解答: 解:由题意可得2n
C
1
n
•2n-1
C
2
n
•2n-2 成等差数列,∴2
C
1
n
•2n-1=2n+
C
2
n
•2n-2,解得n=8.
故展开式的通项公式为Tr+1=
C
r
8
•28-rx4-
3r
4
,令4-
3r
4
=-2,求得r=8,
故该二项式展开式中x-2项的系数为
C
8
8
•20=1,
故选:A.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=1,BC=2,PA=2,E、F分别是AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:CD⊥EF;
(3)求EF与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-cos2x-2asinx,(x∈[0,π],a∈R),求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈(0,
π
2
),则不等式
sin2(x+
π
4
)+a
sin2x
+sin2x≥5恒成立的正实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点是F,上顶点是A,点M满足
AM
=
1
2
(
AO
+
AF
)
(O为坐标原点),且sin∠MAF=
1
3
,则椭圆C的离心率为(  )
A、
6
3
B、
3
3
C、
6
6
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三角形的三个内角成等差数列,且已知一个角为30°,则另外两个角的度数分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x≤y≤z,且xy+xz+yz=1,则xz的上界为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x-2)2+(y-2)2=1的圆心为M,由直线x+y+a=0上任意一点P引圆的一条切线,切点为A,若
PM
PA
>1
恒成立,则实数a的取值范围为(  )
A、(-∞,-6)∪(-2,+∞)
B、(-∞,-6]∪[-2,+∞)
C、(-6,-2)
D、[-6,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρ(sinθ-cosθ)=a与曲线ρ=2cosθ-4sinθ相交于A,B两点,若|AB|=2
3
,则实数a的值为
 

查看答案和解析>>

同步练习册答案