精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形是矩形,平面分别是的中点.

(1)求证:∥平面
(2)求证:平面

(1)证明见解析;(2)证明见解析.

解析试题分析:(1)连接,应用三角形中位线定理得
(2)连结.可得到平面平面
通过证明,得到所以 平面
通过确定四边形为平行四边形,进一步得到四边形为平行四边形,即可得证.
试题解析:证明:(1)连接,因为 分别是,的中点,
所以 .                  2分
又因为 平面平面
所以 ∥平面.        4分

(2)连结.因为 平面平面
所以 平面平面                   6分
因为 的中点, 所以
所以 平面.                  8分
因为 ,  
所以 四边形为平行四边形,所以 .                  10分
 ,所以   所以 四边形为平行四边形,
. 所以 平面.                12分
考点:平行关系,垂直关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.

(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.

求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,

(1)求证:平面.
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点.

求(1)异面直线EF和A1B所成的角.
(2)三棱锥A-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体ABCDE中,ABAD=2,ABADAE⊥平面ABDM为线段BD的中点,MCAE,且AEMC.

(1)求证:平面BCD⊥平面CDE
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.的中点,

(1)求证:
(2)求二面角的正切值.

查看答案和解析>>

同步练习册答案