精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:平面平面
(2)求证:∥平面

(1)详见解析,(2)详见解析.

解析试题分析:(1)证明面面垂直,关键找出线面垂直.因为侧面为菱形, 且,所以△为正三角形,因而有.又的中点,所以有,这样就可得到平面,进而可证平面平面.(2)证明线面平行,关键找出线线平行. 条件“的中点”,提示找中位线.取中点,就可得,利用线面平行判断定理即可.解决此类问题,需注意写全定理成立的所有条件,不可省略.
试题解析:(1)证明:∵ 为菱形,且
∴△为正三角形. 2分
的中点,∴
的中点,∴ . 4分
,∴平面. 6分
平面,∴平面平面. 8分
(2)证明:连结,设,连结
∵三棱柱的侧面是平行四边形,∴中点. 10分
在△中,又∵的中点,∴.12分
平面平面,∴ ∥平面. 14分
考点:面面垂直判定定理,线面平行判定定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形所在的平面与平面垂直,的交点,,且
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.

求证:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥,底面是矩形,平面底面平面,且点上.

(1)求证:
(2)求三棱锥的体积;
(3)设点在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱柱中,,点分别是的中点.
 
(1)求证:平面∥平面
(2)求证:平面⊥平面
(3)若,求异面直线所成的角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是矩形,平面分别是的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

同步练习册答案