精英家教网 > 高中数学 > 题目详情

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积

(1)详见解析,(2)详见解析,(3)

解析试题分析:(1)证线面平行找线线平行,本题有中点条件,可利用中位线性质.即DM∥AP,写定理条件时需完整,因为若缺少DM面APC,,则DM可能在面PAC内,若缺少AP面APC,则DM与面PAC位置关系不定.(2)证面面垂直关键找线面垂直.可由面面垂直性质定理探讨,因为BC垂直AC,而AC为两平面的交线,所以应有BC垂直于平面PAC,这就是本题证明的首要目标.因为BC垂直AC,因此只需证明BC垂直平面PAC另一条直线.这又要利用线面垂直与线线垂直关系转化.首先将题目中等量关系转化为垂直条件,即DM⊥PB,从而有PA⊥PB,而PA⊥PC,所以PA⊥面PBC,因此PA⊥BC.(3)求锥的体积关键找出高,有(2)有PA⊥面PBC,因此DM为高,利用体积公式可求得
试题解析:(1)D为AB中点,M为PB中点
DM∥AP
DM面APC,AP面APC
DM∥面PAC
(2)△PDB是正三角形,M为PB中点
DM⊥PB,又DM∥AP,PA⊥PB
PA⊥PC,PBPC=P,PA⊥面PBC
BC面PBC,PA⊥BC
∠ACB=90°,BC⊥AC
ACPA=A,BC⊥面PAC
BC面ABC,面PAC⊥面ABC
(3)AB=20,D为AB中点,AP⊥面PBC
PD=10
△PDB为正三角形,DM=5
BC=4,PB=10,PC=2
S△PBC=

考点:线面平行判定定理,面面垂直判定定理,锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正三棱柱中,,D、E分别是的中点,

(1)求证:面⊥面BCD;
(2)求直线与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(1)求证:平面
(2)求折后直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(Ⅰ)求异面直线GE与PC所成角的余弦值;
(Ⅱ)若F点是棱PC上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.

(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点.

(1)若PA=PD,求证:平面平面PAD;
(2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.

(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.

查看答案和解析>>

同步练习册答案