精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(Ⅰ)求异面直线GE与PC所成角的余弦值;
(Ⅱ)若F点是棱PC上一点,且,求的值.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)根据异面直线所成角的定义可过点作//,则(或其补角)就是异面直线所成的角. 因为////,则四边形为平行四边形,则,故可在中用余弦定理求。(Ⅱ)由可得,过为垂足。易得证平面,可得,从而易得证//,可得,即可求的值。
试题解析:(Ⅰ)
在平面内,过点作//,连结,则(或其补角)就是异面直线所成的角.
中,
由余弦定理得,
∴异面直线所成角的余弦值为.
(Ⅱ)
在平面内,过为垂足,连结,又因为
平面 ∴
由平面平面,∴平面 ∴//
,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直四棱柱底面直角梯形,是棱上一点,.
(1)求直四棱柱的侧面积和体积;
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在的平面与平面垂直,的交点,,且
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体
(1)在正方体的所有棱中,哪些棱所在直线与直线异面
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.

求证:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

同步练习册答案