如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.
(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.
(1)详见解析,(2)详见解析.
解析试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为四边形ABCD是矩形,所以AB∥CD,因为平面CDEF,平面CDEF,所以AB∥平面CDEF.因为平面ABFE,平面平面,所以AB∥EF.(2)证明面面垂直,一般利用其判定定理证明,即先证线面垂直. 因为DE⊥平面ABCD,平面ABCD,所以DE⊥BC.因为BC⊥CD,,平面CDEF,所以BC⊥平面CDEF.因为BC平面BCF,平面BCF⊥平面CDEF.
试题解析:【证】(1)因为四边形ABCD是矩形,所以AB∥CD,
因为平面CDEF,平面CDEF,
所以AB∥平面CDEF. 4分
因为平面ABFE,平面平面,
所以AB∥EF. 7分
(2)因为DE⊥平面ABCD,平面ABCD,
所以DE⊥BC. 9分
因为BC⊥CD,,平面CDEF,
所以BC⊥平面CDEF. 12分
因为BC平面BCF,平面BCF⊥平面CDEF. 14分
考点:线面平行与垂直关系
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面面,是中点.
(1) 证明:∥平面;
(2) 求三棱锥的体积.
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA//平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(1)求证:平面;
(2)求折后直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(Ⅰ)求异面直线GE与PC所成角的余弦值;
(Ⅱ)若F点是棱PC上一点,且,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com