如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC的中点.
(1)求证:PA//平面BDM;
(2)求直线AC与平面ADM所成角的正弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、
A1C1的中点.
(1)求证:CB1⊥平面ABC1;
(2)求证:MN//平面ABC1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高.
(1)证明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;
(3)证明:EF⊥平面PAB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,长方体中,,G是上的动点。
(l)求证:平面ADG;
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.
求证:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com