如图,已知
为平行四边形,
,
,
,点
在
上,
,
,
与
相交于
.现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.
(1)求证:
平面
;
(2)求折后直线
与平面
所成角的余弦值.![]()
(1)(2)![]()
解析试题分析:(1)连接
,欲证
平面
,只要证点
是点
在平面
内的射影,易证在平面图中,
有
此结论在折后的空间几何体中仍成立
平面![]()
平面![]()
平面![]()
点
在平面
内的射影在直线
上,结合已知条件,知点
在平面
上的射影又恰在直线
上![]()
是点
在平面
内的射影,从而结论得证.利用勾股定理求出相关线段的长度即可在直角三角形
求出
的值.![]()
(2)连接
,由(1)知,
是
在平面
内的射影,![]()
就是所求的线面角,
试题解析:(1)由
得
平面
则平面![]()
平面
平面
![]()
则
在平面
上的射影在直线
上,
又
在平面
上的射影在直线
上,
则
在平面
上的射影即为点
,
故
平面
(2)连接
,由
平面
,得
即为直线
与平面
所成的角,
在原图中,由已知,可得
折后,由
平面
,知
则
,即
则在
中,有
,
,则
,
故![]()
即折后直线
与平面
所成角的余弦值为![]()
![]()
科目:高中数学 来源: 题型:解答题
如图,
,
为圆柱
的母线,
是底面圆
的直径,
,
分别是
,
的中点,
.
(1)证明:
;
(2)证明:
;
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥
内会有被捕的危险,求鱼被捕的概率.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=
AB,PH为△PAD边上的高.![]()
(1)证明:PH⊥平面ABCD;
(2)若PH=1,AD=
,FC=1,求三棱锥E-BCF的体积;
(3)证明:EF⊥平面PAB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,长方体
中,
,G是
上的动点。![]()
(l)求证:平面ADG![]()
;
(2)判断
与平面ADG的位置关系,并给出证明;
(3)若G是
的中点,求二面角G-AD-C的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥S
ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.![]()
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com