如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
科目:高中数学 来源: 题型:解答题
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(1)求证:平面;
(2)求折后直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点.
(1)若PA=PD,求证:平面平面PAD;
(2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是圆的直径,点是圆上异于的点,直线 分别为的中点。
(1)记平面与平面的交线为,试判断与平面的位置关系,并加以说明;
(2)设(1)中的直线与圆的另一个交点为,且点满足,记直线
平面所成的角为异面直线与所成的锐角为,二面角的大小为
①求证:
②当点为弧的中点时,,求直线与平面所成的角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.
(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点.
求(1)异面直线EF和A1B所成的角.
(2)三棱锥A-EFC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com