精英家教网 > 高中数学 > 题目详情

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

(1)见解析  (2)60°  (3)

解析(1)证明:由题意知,AB⊥AD,AD=1,AB=,
∴BD=2,BC=4,
∴DC=2,
则BC2=DB2+DC2,
∴BD⊥DC,
∵PD⊥平面ABCD,
∴BD⊥PD,
而PD∩CD=D,
∴BD⊥平面PDC.
∵PC在平面PDC内,
∴BD⊥PC.
解:(2)如图所示,过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G.

∵PD⊥平面ABCD,
∴平面PDC⊥平面ABCD,
∴FG⊥平面PDC,
∴∠FDG为直线AB与平面PDC所成的角.
在Rt△DFC中,∠DFC=90°,DF=,CF=3,
∴tan∠FDG=,
∴∠FDG=60°.
∴直线AB与平面PDC所成角为60°.
(3)连接EF,

∵DF∥AB,
∴DF∥平面PAB.
∵DE∥平面PAB,
∴平面DEF∥平面PAB,
∴EF∥AB,如图所示,
∵AD=1,BC=4,BF=1,
==,
=,
即λ=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(Ⅰ)求异面直线GE与PC所成角的余弦值;
(Ⅱ)若F点是棱PC上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形, 平面,于点

(1) 求证:
(2) 求直线与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.

(1)求证:C1E∥平面ADF;
(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.

(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体ABCDE中,ABAD=2,ABADAE⊥平面ABDM为线段BD的中点,MCAE,且AEMC.

(1)求证:平面BCD⊥平面CDE
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

同步练习册答案